

Introduction

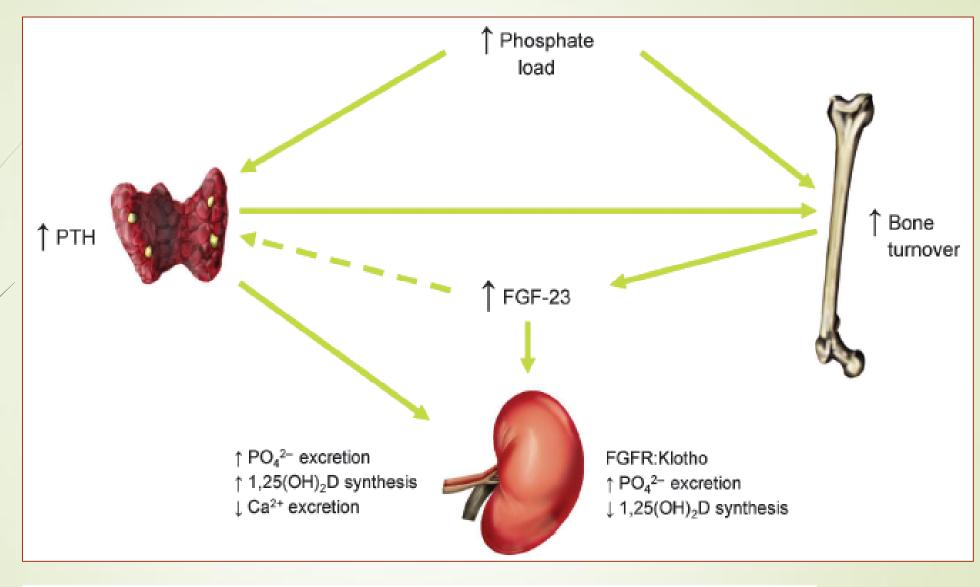
- CKD-MBD is a systemic disorder of mineral and bone metabolism resulting from CKD that may be manifested by either one or a combination of the following:
 - Abnormalities in: Calcium, Phosphorus, PTH, Vitamin D metabolites
 - Abnormalities in: Bone turnover, Bone mineralization, Bone volume, Bone strength, Linear growth
 - Calcification of extraskeletal tissue, include the vasculature and other soft tissues
 - Each of these abnormalities is associated with high mortality rates, primarily from cardiovascular complications.

Definition of renal osteodystrophy

- Renal osteodystrophy is an alteration of bone morphology in patients with CKD.
- It is one measure of the skeletal component of the systemic disorder of CKD-MBD that is quantifiable by histomorphometry of bone biopsy.
- CKD-MBD assessed by bone histomorphometry. There are three key histologic descriptors:
 - Bone turnover: normal, increased, or decreased
 - Bone mineralization: normal or abnormal
 - Bone volume: normal, increased, or decrease
- This is referred to as the TMV (turnover, mineralization, and volume) system

Bone disease in patients with advanced CKD collectively called renal osteodystroph

Predominant
hyperparathyroidmediated high-turnover
bone disease (osteitis
fibrosa)


Osteomalacia (defined as a mineralization lag time >100 days)

Mixed uremic osteodystrophy (MUO; hyperparathyroid bone disease with a superimposed mineralization defect

Adynamic bone (diminished bone formation and resorption) Predominant hyperparathyroid-mediated high-turnover bone disease (osteitis fibrosa)

Introduction

- Phosphate retention begins early in renal disease, due to the reduction in the filtered phosphate load.
- Phosphate retention is closely related to:
 - 1. Cardiovascular disease risk in CKD
 - 2. Increased FGF-23 levels
 - 3. Secondary hyperparathyroidism

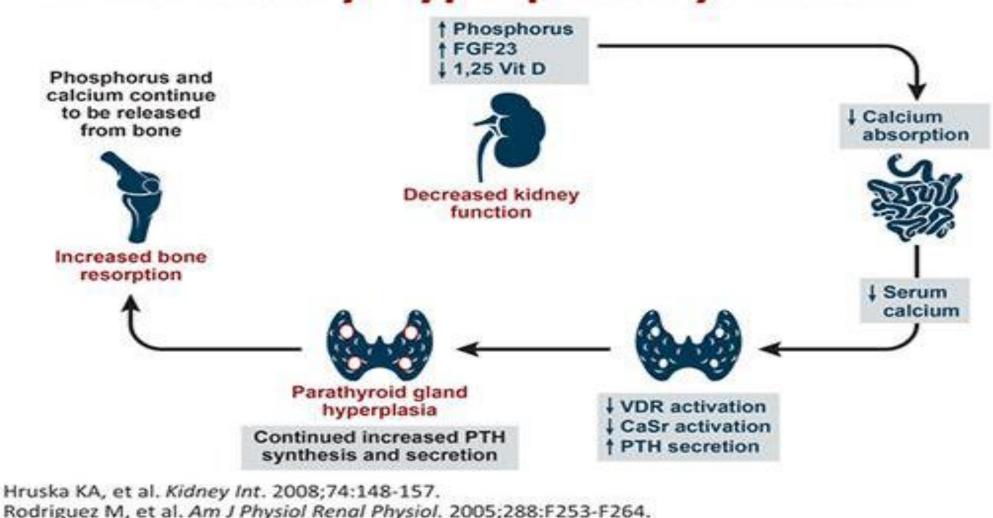
Effect of dietary phosphorus load on phosphorus metabolism in the body.

FGF-23 appears to be the initial hormonal abnormality

- Increased FGF-23 leads to:
 - 1. Increased urinary phosphate excretion
 - 2. Suppression of 1,25(OH)₂D
- PTH increases in response to reductions in 1,25(OH)₂D
- PTH can correct both the hypocalcemia and the hyperphosphatemia by:
 - Increasing bone turnover & Ca-P release from bone
 - Enhancing urinary phosphate excretion.

FGF-23

- FGF-23 is also important in the renal adaptation to maintain phosphate excretion
- The fraction of the filtered phosphate that is reabsorbed, progressively reduces from the normal value of 80 -95% to as low as 15% in advanced renal failure
- Phosphate balance and a normal serum phosphate concentration are generally maintained until GFR falls below 25 -40 mL/min, at the price of elevated FGF-23 and hyperparathyroidism.

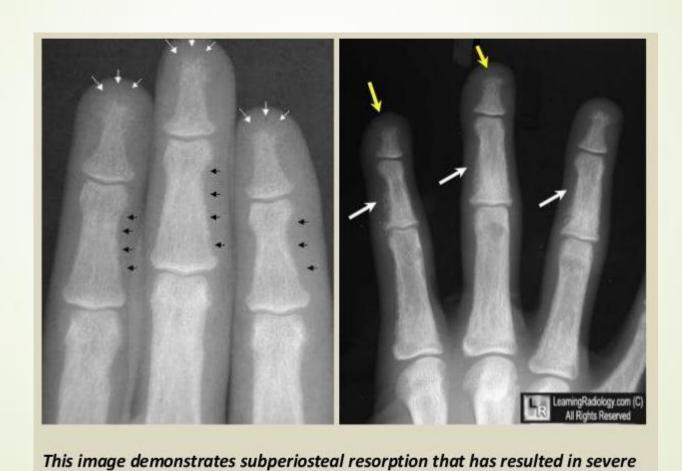

PTH effects on Phosphate

- The initial elevation in PTH secretion is appropriate since
 - Increase in phosphate excretion lowers the plasma phosphate concentration toward normal.
- Among patients with severely reduced GFR
 - PTH inhibits proximal tubule phosphate reabsorption from the normal 80 to 95 % to as low as 15 % of the altered phosphate.
- Hyperparathyroidism also tends to correct both
 - Hypocalcemia (by increasing bone resorption) and
 - Calcitriol deficiency (by stimulating the 1-hydroxylation of calcidiol [25-hydroxyvitamin D] in the proximal tubule)

PTH effects on Phosphate

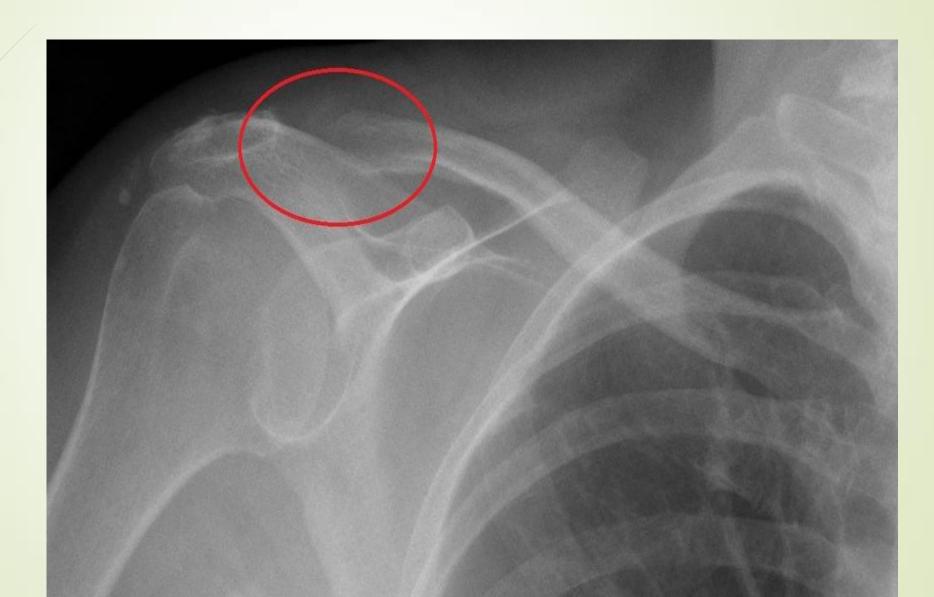
- In advanced stages of CKD, when the GFR drops below 30 mL/min, the compensatory increase in the levels of PTH and FGF23 becomes inadequate, and hyperphosphatemia develops.
- Moreover, since phosphate reabsorption by the renal tubules cannot be lowered below a minimum threshold,
- Continued PTH-induced release of phosphate from bone can actually exacerbate the hyperphosphatemia

Factors Contributing to Pathogenesis of Secondary Hyperparathyroidism


hyperparathyroid-mediated high-turnover bone disease

- High turnover lesion, sometimes called osteitis fibrosa cystica
- Generally asymptomatic but is associated with nonspecific bone pain, proximal myopathy
- There is an increased risk of fractures
- The serum-intact PTH level is usually higher than 350 to 500 pg/mL.
- Radiologic features are :
 - Subperiosteal resorption
 - Brown tumors
 - Mottled and granular salt-and-pepper appearance to the skull.

Subperiosteal bone resorption



tuftal resorption . Also, note the subperiosteal and intracortical resorption.

Bone cyst

Resorption of the distal ends of long bones

Diagnosis of renal osteodystrophy

- Histology and histomorphometry serve as powerful tool in assessing systemic skeletal diseases like osteoporosis.
- Histomorphometry is one of the standard method to study different cell type activities under normal and diseased condition.
- Bone histomorphometry provides qualitative and quantitative information on:
 - Bone structure, bone remodelling and turnover in histological sections of mineralized (undecalcified) bone

Bone lesion associated with Hyperparathyroidism

- Histologic features include:
- Increased turnover (T) as indicated by:
 - Increased bone resorption and formation
 - Increased numbers of osteoclasts and osteoblasts
 - Increased tetracycline uptake
- Abnormal mineralization (M), as indicated by increase of woven bone, peritrabecular fibrosis and there may or may not be increased osteoid
- Generally increased volume (V)

Diagnosis of renal osteodystrophy

- lower dual-energy X-ray absorptiometry (DXA) BMD predicts incident fractures in patients with CKD G3a-G5D.
- A DXA BMD result might impact the decision to do a bone biopsy.
- Although definitive diagnosis in an individual patient requires a bone biopsy,
- Much information about bone disease can be inferred from clinical and laboratory findings.

Treatment of high-turnover bone disease

- Prevention and correction of the factors leading to secondary hyperparathyroidism
 - Phosphorus control:
 - Dietary restriction, phosphate binders, adequate dialysis
 - Prevention of hypocalcemia:
 - Oral calcium supplements, correction of vitamin D deficiency, dialysis
 - Suppression of PTH production and secretion:
 - Vitamin D receptor activators (VDRA), including calcitriol,

Treatment of high-turnover bone disease

- Surgical parathyroidectomy:
 - In severe cases, parathyroidectomy may be required
 - However, bone biopsy should be considered prior to surgery

Osteomalacia (defined as a mineralization lag time >100 days)

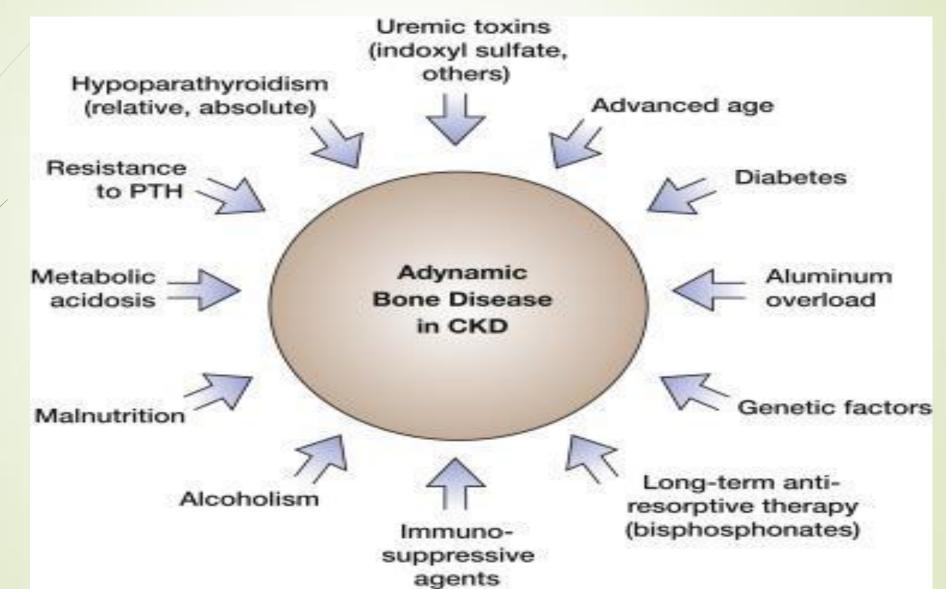
Osteomalacia

- Osteomalacia is an abnormality of mineralization (M) that is characterized by:
 - An excess of unmineralized osteoid, manifested as wide osteoid seams and a markedly decreased mineralization rate.
 - Other features of osteomalacia include the absence of cell activity and the absence of endosteal fibrosis
 - Aluminum disease is associated with osteomalacia.
 - Serum PTH is, in general, normal or low, and hypercalcemia is common.
 - Looser zones or pseudofractures are radiologic characteristics.

Osteomalacia

- Bone remodeling occurs continually on both trabecular and Haversian bone surfaces.
- At any given time, approximately 7 percent of the bone surface is in the process of forming new bone.
- Osteomalacia is the softening of the bones due to impaired bone metabolism as result of insufficient levels of phosphate, calcium, and vitamin D, or because of resorption of calcium.
- All of this leads to inadequate bone mineralization.

Adynamic bone (diminished bone formation and resorption)


- ABD is defined by :
 - Presence of low or absent bone formation as determined by:
 - Decreased tetracycline uptake into bone,
 - In conjunction with a paucity of boneforming osteoblasts and bone-resorbing osteoclasts (decreased T).
- ABD may also be associated with a defect in mineralization (abnormal M), resulting in the histologic lesion referred to as osteomalacia.
- Bone volume (V) is variable.
- ABD may manifest with nonspecific bone pain and fractures.
- Hypercalcemia is a common feature.
- There may be a tendency for increased extraskeletal calcification

- Low turnover is characterized histologically by absence of:
 - Cellular (osteoblast and osteoclast) activity
 - Osteoid formation
 - Endosteal fibrosis
- This is a disorder of decreased bone formation, accompanied by a secondary decrease in bone mineralization
- Even among CKD patients not yet on dialysis, the prevalence of ABD has reportedly increased to between 12 and 23 percent.
- In a bone biopsy study of 84 unselected patients with stage 5 CKD, ABD was the most prevalent type of renal osteodystrophy, particularly in diabetic patients.

- PTH concentrations normal or mildly elevated (than 100 to 200 pg/mL)
- Resistance to the bone stimulatory effect of PTH in CKD
- PTH receptor downregulation is one potential mechanism to explain the bone resistance effect to PTH resulting

- Major risk factors for low turnover bone disease include:
 - Diabetes
 - Aging
 - Malnutrition
- Other causes of low bone formation in CKD are multifactorial and include:
 - Vitamin D deficiency
 - High serum phosphate
 - Metabolic acidosis
 - Elevated circulating cytokine levels (interleukin [IL]-I, tumor necrosis factor [TNF])
 - Low estrogen and testosterone levels

Risk factors

Adynamic bone disease

In brief....

- Low or absent bone formation
- Thin osteoid seams
- Decreased cellularity
- Minimal bone marrow fibrosis

Bone turnover is markedly reduced

Lack of bone cell activity (both osteoblasts and osteoclasts)

Principal factor underlying adynamic bone disease

Resistance to the bone stimulatory effects of PTH may play an even larger role Mixed uremic osteodystrophy (MUO; hyperparathyroid bone disease with a superimposed mineralization defect)

Mixed Uremic Osteodystrophy (MUO)

- Mixed uremic osteodystrophy has features of high turnover bone disease together with evidence of a mineralization defect.
- Extensive osteoclastic and osteoblastic activity
- Increased endosteal peritrabecular fibrosis, coupled with more osteoid than expected
- Tetracycline labeling uncovers a concomitant mineralization defect

Target Levels

	Ca (mg/dL) A	P (mg/dL)	PTH pmol/L	Ca Intake	Ca×P
CKD ND	Normal Lab Range	2.7- 4.6 (0.87-1.49 mmol/L)	<70 stage 3 <110 stage 4	1.4- 2 gr/d [@]	<55●
CKD 5D	8.4 to 9.5 (<10.2)* (2.1-2.37 mmol/L)	3.5-5.5** (1.13-1.78 mmol/L)	150-300	1.4- 2 gr/d [@]	<55•

*Values up to 10.5 have been shown not to increase mortality.

**Mortality may not be increased with serum P 3.0-7.0

[®]It is reasonable to keep Ca intake below 1.4 gr/day

- ▲Measurment of iCa is suggested by KDIGO and European studies.
- Since iPTH>200 has been associated with CVD outcome, it is important to treat it with activated vitamin D aggressively
- •All-cause mortality did not differ for the Ca x P range of 40–75mg²/dL²

Dietary Phosphate Restriction

- Fewer than ESRD 50% of patients meet target levels for serum phosphorus.
- Dietary phosphate restriction may reduce the serum concentration of phosphate, FGF-23, and PTH, till the relatively late stages of CKD, although not usually to normal.

Organic & Inorganic Dietary P

- The main food sources of phosphorus are
 - Protein food groups of meat
 - Poultry
 - **■** Fish
 - **■** Eggs
 - Dairy products
- Plants: some plant seeds, beans, peas, cereals, nuts, legumes, cocoa,
- A large whole egg contains 6 g of protein and 86 mg of P, whereas egg white from 1 large egg (3.6 g protein) contains 5 mg of P, indicating that the bulk of egg phosphorus is in the egg yolk.
- Poultry contain less P than red meat and fish

Organic & Inorganic Dietary P

- Phosphorus in plants, especially in beans, peas, cereals, and nuts, is mostly in the storage form of phytic acid or phytate, with a low absorption rate.
- Digestibility of P from animal-derived foods is higher than that of plant-based proteins.
- >90% of inorganic P from processed food may be as opposed to only 40-60% of the organic P present in natural foods

Dietary Phosphate Restriction

- Phosphate restriction should primarily include:
 - Processed foods
 - Colas
 - ■NOT high biologic value foods such as meat and eggs
- The average daily dietary intake of P is about 1550 mg for males and 1000 mg for females.
- Approximately 900 mg phosphorus per day is relatively acceptable.

Dietary Phosphate Restriction

- Unnecessary dietary phosphate:
 - Phosphorus-containing food additives
 - Dairy products
 - Certain vegetables
 - Many processed foods, and colas
- Patients should restrict these foods while increasing the intake of high biologic value sources of protein such as meat and eggs.

Pharmacologic Therapy

calcium-based phosphate binders

- Currently the 1st-line Rx for hyperphosphatemia
- They bind P in the intestinal lumen, & reduce its absorption.
- The main problem with these drugs is the transient episodes of hypercalcemia, requiring reduction of the dose of vitamin D analogues and adjustment of the calcium concentration of the dialysis solution.
- Ca concentration in HD or PD should be 2.5 meq/L
 (1.25 mmol/L) (K/DOQI 2003) or 2.5-3.0 (KDOGO 2009)

calcium-based phosphate binders

- CaCO3 dissolves only at an acid pH and many patients with advanced renal failure have achlorhydria or are taking H2-blockers.
- Calcium acetate, is soluble in both acid and alkaline environments and is a more efficient phosphate binder.
- Calcium acetate can be used in half dose of CaCO3.
- However the incidence of hypercalcemia is the same with half dose of Ca-acetate compared to CaCo3

calcium-free phosphate binders

- Sevelamer hydrochloride (Renagel)
- Sevelamer Carbonate (Renvela)
- Sevelamer is well tolerated in dialysis population and effective in reducing both serum P and Ca-P product.
- Aluminum hydroxide(AI(OH)3)

Aluminum Hydroxide Al(OH)3

- Patients showing high P levels despite high doses of calcium-based binders may receive AI(OH)3 for a limited period of time (2-4 weeks) in order to prevent hypercalcemia.
- Aluminum hydroxide is a binder more powerful than calcium-based agents, but its use has been avoided or, if used, limited because of toxic effects reported on the central nervous system, bone, and hematopoietic tissue.

Lanthanum Carbonate (Fosrenol)

- Because of high cost its use is limited to patients with hypercalcemia, or as an adjunct to a regimen supplying a maximum dose of 1500 mg of elemental calcium from calcium-based phosphate binders.
- It reduces pill burden (pills of 500, 750 and 1000 mg, with dosage of 1500 to 3000 mgr/day (max: 4500)
- Fosrenol is the largest of all pills filled in community pharmacies.
- Sometimes patients forget that fosrenol is not swallowed whole, but instead should be chewed. This has led to severe choking.
- Appears to be associated with a lower incidence of hypercalcemia and decreased PTH levels versus calciumcontaining phosphate binders.
- Myalgia, muscular cramping, and peripheral edema

Nicotinamide

- Nicotinamide, a metabolite of nicotinic acid (niacin, vitamin B3)
- Inhibits the Na/Pi co-transport in the GI tract and kidneys
- May be effective in lowering P levels in dialysis patients by reducing GI tract P absorption.

Polynuclear iron (III)-oxyhydroxide phosphate (PA21)

- 154 participants were randomized to PA21 at dosages of 1.25,
 5.0, 7.5, 10.0, or 12.5 g/d or sevelamer-HCl 4.8 g/d for 6 weeks
- All groups except PA21 1.25 g/d showed a significant decrease in serum P.
- The 5 g/d and 7.5 g/d dosages showed similar efficacy to 4.8 g/d of sevelamer-HCI.
- The most frequent adverse events were
 - Hypophosphatemia (18.0%) and discolored feces (11.7%) for the PA21 dose groups
 - Diarrhea, hypophosphatemia, and hypotension (each 11.5%) for sevelamer-HCI.
- The adverse events rate was similar for PA21 and sevelamer-HCI.

Drug Preparations & Dosage

		Tab. (Suspension)	P level	dosage
	AI(OH)3	300 mg (320 mg/5 ml)	Usually P >7 mg/dl	300-600 mg tid
	CaCO3	500 mg		500 mg tid (max 2 g)
	SevelamerHCI	800 mg	5.5-7.4 mg/dL 7.5-9.0 mg/dL ≥9.0 mg/dL	800 mg 3 tid 1200-1600 mg 3 tid 1600 mg 3 tid (Max:7200 mg/day)

Dialysis

- The average standard dialysis removes about 900 mg of P.
- Phosphate removal during dialysis is limited largely due to the intracellular location of most inorganic phosphorous.
- Full dialyzer clearance is effective in only the initial phase of the dialysis treatment.
- After this initial phase, the transfer rate for phosphate from the intracellular space to the plasma becomes the ratelimiting step for phosphate transport.
- However there several studies have shown that short daily hemodialysis improves phosphate balance.

Pohlmeier R. Kidney Int Suppl. 2001 Feb;78:S190-4

FACTORS WHICH INFLUENCE P REMOVAL IN HD

- There was a good correlation between P removal and:
 - Serum phosphate levels
 - Blood V (L) that passed the dialyzer in each session
 - AV fistula as vascular access
- No correlation was found between P removal and:
 - Membrane surface
 - KT/V
 - Dialysate flux
 - Ultra filtration or treatment duration.
- Phosphate removal was 640 ± 180 mg/session with low-flux membrane and 700 ± 170 mg/session with high-flux membrane
- On multivariate analysis, plasma phosphate and the volume of blood that passed the dialyzer in each session predicted phosphate removal

Therapeutic Strategies

- Consider patients with CKD stages 3-5D with known vascular/valvular calcification to be at the highest cardiovascular risk
- In CKD stages 3–5D & hyperphosphatemia restrict;
 - Dose of Ca-based phosphate binders
 - Dose of calcitriol or vitamin D analog in the presence of persistent or recurrent hypercalcemia
- Restrict the dose of calcium-based phosphate binders in the presence of:
 - Arterial calcification
 - Adynamic bone disease
 - If serum PTH levels are persistently low

Therapeutic Strategies

- In patients with CKD stages 3–5D;
 - Avoid the long-term use of AI(OH)3 and
- In patients with CKD stage 5D:
 - Avoiding dialysate aluminum contamination to prevent aluminum intoxication
- In patients with CKD stages 3-5D:
 - Limit dietary phosphate intake in the treatment of hyperphosphatemia alone or in combination with other treatments
- In patients with CKD stage 5D:
 - Increase dialytic phosphate removal in the treatment of persistent hyperphosphatemia

