
Information Sciences 475 (2019) 18–28

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Publicly verifiable database scheme with efficient keyword

search

Meixia Miao

a , Jianfeng Wang

a , b , ∗, Sheng Wen

c , Jianfeng Ma

a

a State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
b State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 10 0 093, China
c Swinburne University of Technology, Melbourne 3122, Australia

a r t i c l e i n f o

Article history:

Received 9 July 2018

Revised 28 August 2018

Accepted 30 September 2018

Available online 3 October 2018

Keywords:

Verifiable database

Searchable encryption

Vector commitment

Cloud computing

a b s t r a c t

The primitive of verifiable database (VDB) enables a resource-limited client to securely

outsource a large and dynamic database on an untrusted server. Meanwhile, any misbe-

havior that attempts to tamper with the database can be detected undoubtedly. However,

it seems that all existing VDB constructions only satisfy the basic query and update opera-

tions for a certain index performed by the client. In this paper, we first attempt to address

the challenge of keyword-based search on VDB scheme. Specifically, we propose a con-

crete VDB construction supporting efficient keyword search based on the enhanced vector

commitment, where each position of vector commitment is tied to a distinct keyword. Fur-

thermore, we show how to extend the basic construction to support conjunctive keyword

search. Security and efficiency analysis demonstrate that the proposed VDB schemes can

achieve the desired security goals with high efficiency.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the adventure of cloud computing and big data, more and more resource-constrained enterprises or clients prefer

to move their own data into the cloud. This is known as the paradigm of Database-as-a-Service (or outsourcing storage)

[1,2,19,27,28,35] . However, because the cloud server cannot be full trusted, this paradigm also introduces many security

challenges. One of the most critical challenges is how to ensure the integrity of the database. If the cloud server could

tamper with the data records without being detected, it may return invalid results for any query on the database. As a result,

the database services provided by the cloud server are meaningless. For the case of a static database, a trivial solution to

ensure the integrity of the database is to use the technique of message authentication code (MAC). For example, the client

could generate a signature on each data record of the database and then upload the data record and the resulting signature

together. Given a query by the client, the cloud server outputs the data record together with the corresponding signature.

Nevertheless, this solution will not work if the database is a dynamic one.

Benabbas et al. [5] firstly proposed the primitive of verifiable database with efficient update (VDB, for short) to address

the above challenge of database outsourcing. To be specific, a resource-limited client could not only outsource his large

database into the cloud but also retrieve and update any database record. Besides, any misbehavior of attempting to tam-

per with database records will be detected by the client. The first practical VDB construction was proposed based on the
∗ Corresponding author.

E-mail address: jfwang@xidian.edu.cn (J. Wang).

https://doi.org/10.1016/j.ins.2018.09.067

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.09.067
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.09.067&domain=pdf
mailto:jfwang@xidian.edu.cn
https://doi.org/10.1016/j.ins.2018.09.067

M. Miao et al. / Information Sciences 475 (2019) 18–28 19

subgroup membership assumption in composite order bilinear groups. However, it only supports the property of private

verifiability. That is, only the client (i.e., data owner) can check the correctness of the proofs with his private key. In order

to achieve the public verifiability of the outsourced database, Catalano et al. [11] presented an elegant solution to design

public verifiable VDB scheme with a new primitive called vector commitment. The proposed scheme can support the public

verifiability under the computational Diffie-Hellman (CDH) assumption. Thus, any interested third party could verify the in-

tegrity of the database. Motivated by the two initial constructions, plenty of VDB schemes have been proposed in the recent

years [12–14,30,31,39] .

Note that traditional VDB schemes only focus on the type of NoSQL databases. That is, the database consists of the pair

of (i, v i), where v i is the corresponding data value indexed by i . Based on the vector commitment technique, the client

can query a certain index i and retrieve the data v i along with the corresponding proof, which can be used to verify the

integrity of data value v i . However, the client can only perform the basic query with a certain index. Note that in the real-

world applications, the client may require various types of search, such as range queries, exact match queries, and the most

common keyword-based queries (or keyword search). Obviously, the queries on the index in VDB schemes can be viewed

as a special kind of keyword search if we view the index as a specified keyword. However, all the existing VDB schemes

never considered the general keyword-based queries, e.g., searching all of data records for which the value is equal to 10 0 0.

On the other hand, some existing searchable encryption schemes considered the case of performing keyword searches on

dynamic databases. However, none of them focused on the integrity and verifiability of database. Recently, Zhang et al.

[38] presented a new searchable encryption scheme with verifiability via blockchain. We argue that it only support the

verifiability of searching result, not the database itself. Specifically, it can only ensure all the matched document identities

are returned, but cannot check the integrity of the document content. If the client cannot verify whether the malicious cloud

server performed the keyword search on the latest updated database or not, the search results provided by the server were

meaningless. To the best of our knowledge, there is no VDB construction that can simultaneously support efficient keyword

search.

1.1. Our contribution

In this paper, we first address the challenge of performing efficient keyword search on verifiable and dynamic database.

The contributions of this paper are summarised as follows:

• We propose the first VDB framework that supports efficient keyword search by incorporating the primitives of VDB and

searchable symmetric encryption (SSE). Besides, the framework can ensure the (public or private) verifiability of dynamic

database and thus preserve all properties of VDB schemes.

• The proposed new framework can simultaneously achieve verifiability of search result and integrity of database based on

the binding of document identifiers and database indexes. Due to its distinguishable property, the resulting VDB scheme

supporting keyword search is almost as efficient as the traditional VDB scheme.

• We show that our proposed construction can be easily extended to expressive search, i.e., conjunctive query. That is, any

searchable encryption scheme can be used as a building block of our framework in a black-box manner.

1.2. Related work

1.2.1. Verifiable database

All existing VDB schemes are constructed with the cryptographic primitives of delegating polynomial functions or vec-

tor commitment. Benabbas et al. [5] proposed the first practical VDB construction with delegating polynomial functions.

Their solution could only support private verifiability because the secret key is involved in verifying the proof. Catalano and

Fiore [11] presented the first publicly verifiable VDB scheme from vector commitment. Nevertheless, Chen et al. [12] argued

that the proposed VDB scheme [11] could not resist the forward automatic update (FAU) attack by the malicious server.

In order to reduce the computation overhead on the client side, Chen et al. [14] presented a new primitive called VDB

with incremental updates (Inc-VDB), which was more efficient in the case that the database confronts frequent but slight

modifications. Note that all the VDB schemes mentioned above [5,11,12,14] only support data replacement operation. Miao

et al. [31] firstly considered to design an efficient VDB scheme that supported all types of updating operations. They also

presented a concrete VDB construction supporting all updating operations by using a new primitive called hierarchical vec-

tor commitment. However, the number of layer of hierarchical vector commitment in their construction increased linearly

in the case when some data records were continually inserted at the same position of the database. Following that, Miao

et al. [30] introduced a new primitive called Merkel sum hash tree and then used to construct an efficient VDB scheme

supporting all types of update operations. However, it could not support the property of public verifiability.

1.2.2. Searchable encryption

The notion of searchable encryption could be divided into two categories. One is called searchable asymmetric encryption

(or known as public-key encryption keyword search), and the other is called searchable symmetric encryption (SSE for

short). For the efficiency of real-world applications, we only focus on SSE in this paper, which was firstly introduced by

Song et al. [32] . However, the searching complexity in Song et al.’s work was linear to the size of ciphertext. In order to

20 M. Miao et al. / Information Sciences 475 (2019) 18–28

address the efficiency problem of SSE, plenty of research work have been done in recent years [9,15,18,26,29] . Curtmola

et al. [15] constructed an inverted index to improve the search efficiency of SSE. The first dynamic and sub-linear SSE

was first proposed by Kamara et al. [21] . Cash et al. [9] presented a new dynamic SSE scheme that can support a large

database. Stefanov et al. [33] developed the first dynamic SSE scheme satisfied the forward security. Recently, some dynamic

SSE schemes were proposed to support both forward and backward security [7,22] . However, all these SSE schemes were

constructed in the honest-but-curious server model. The dishonest server may return incorrect search results in order to

save the computational resources. Kurosawa and Ohtaki [24] proposed the first verifiable SSE scheme which can verify the

correctness of the search results. Wang et al. [36,37] designed a Bloom Filter Tree to solve the problem on how to verify

when the search result was empty in both static and dynamic database. Azraoui et al. [3] proposed a verifiable SSE scheme

which can achieve conjunctive keyword search. Recently, Bost et al. [6] proposed a verifiable dynamic SSE scheme based on

the primitive of verifiable hash table. On the other hand, in order to enrich the search expression, plenty of research work

focused on designing multi-keyword searchable encryption schemes [10,16,17,20,23,25] .

1.3. Organization

The rest of this paper is organized as follows. Some preliminaries are presented in Section 2 . The proposed VDB scheme

supporting keyword search is given in Section 3 . We present the security and efficiency analysis of our proposed VDB

scheme in Section 4 . The experimental evaluation is presented in Section 5 . Finally, we conclude this paper in Section 6 .

2. Preliminaries

In this section, we introduce some useful preliminaries which will be used in this paper.

2.1. Mathematical assumption

Definition 1. The Computational Diffie-Hellman (CDH) Problem: Given a triple (g, g a , g b), where g is the generator of G

and a, b ∈ R Z p , outputs g ab . The CDH assumption means that, for any probabilistic polynomial time (PPT) adversary A , the

probability to output g ab is negligible, i.e., Pr [A (1 k , g, g a , g b) = g ab] ≤ negl (k) , where negl (·) is a negligible function with

security parameter k .

A variant of CDH problem is the square computational Diffie-Hellman (Squ-CDH) problem. The definition is as follows:

given a tuple (g, g a), where g is a generator of G and a ∈ R Z p , outputs g a
2
. Note that the Squ-CDH problem is equivalent to

traditional CDH problem, which has been proved in [4] .

2.2. Searchable symmetric encryption

Song et al. [32] firstly introduced the primitive of searchable symmetric encryption to address encrypted data search. In

the following, we present the formal definition of SSE.

Definition 2. A searchable symmetric encryption (SSE) [32] scheme is a triple � = (EDBSetup , TokenGen , Search) consists of

three algorithms:

• EDBSetup (λ, DB) : Let λ be the security parameter. Given a database DB = { (ind i , W i) : i ∈ [1 , d] } with ind i ∈ { 0 , 1 } λ and

W i ⊆ { 0 , 1 } ∗. The data owner runs this algorithm and outsources the database DB into the server. It takes λ, DB as input

and generates the secret key sk and outsources the encrypted database EDB to the server 1

• TokenGen (sk, q) : It takes as input secret key sk and search query q , outputs the search token t q .

• Search (t q , EDB) : On receiving the query token t q , the server performs search over the EDB and returns all matched

results R to the client.

2.3. Tuple set

Cash et al. [10] proposed a new primitive named tuple set, or TSet, which can be viewed as an inverted index to build

a single keyword-based SSE scheme. Roughly speaking, TSet is a table structure, where each row is indexed by a keyword

and stored all the document identifiers that contain the given keyword. Upon receiving a keyword-related token, the server

is enabled to perform search with the TSet. In the following, we present the formal definition of TSet with the following

syntax:

• TSetSetup (λ, DB) : It takes as input security parameter λ and the database DB , outputs the encrypted database TSet .

• TSetGetTag (K T , w) : It takes as input private key K T and a query keyword w , outputs the corresponding search token stag .
1 Here, EDB contains the encrypted version of the database and the corresponding index.

M. Miao et al. / Information Sciences 475 (2019) 18–28 21

Fig. 1. The main idea of the proposed VDB scheme with keyword search.

• TSetRetrieve (TSet , stag) : It takes as input a queried token stag and TSet , outputs the encrypted document indemnifiers

t .

Definition 3. Let � = (TSetSetup , TSetGetTag , TSetRetrieve) be a TSet instantiation, and A be an polynomial adversary and

S be a simulator. We define the security of TSet via the following two probabilistic experiments:

• Real
�
A (λ) : Adversary A chooses a keyword set W , the experiment runs (TSet , K T)

← TSetSetup (λ, W) and sends TSet to adversary A . He repeatedly generates queries w ∈ W , and sends stag ←
TSetGetTag (K T , w) to A . Finally, a binary bit b is output as the final output.

• Ideal
�
A , S (λ) : The experiment initializes an empty list q and sets a counter i = 0 . Adversary A selects a keyword set W ,

the experiment runs S(L TSet) and sends TSet to adversary A . He repeatedly generates queries w ∈ W , stores w in q [i]

with increments i , and sends the outputs of S(L TSet , q) to A . Finally, a binary bit b is output as the final output.

We say the � is L T -adaptively secure TSet construction if there exist an simulator S for all probabilistic polynomial-time

adversary A , such that: | Pr [Real
�
A (λ) = 1] − Pr [Ideal

�
A , S (λ)] | ≤ negl(λ) .

3. New efficient VDB scheme with support for keyword search

3.1. High description

In traditional VDB schemes [5,11,12,14] , the client can only perform the simple query on a certain index i (one position of

the database vector). The main reason is that it does not have a keyword-based index that can be used to achieve expressive

search on the whole database. A trivial solution is that we can regard each document identity as one component of vector

commitment. Then, the server can provide the corresponding proof according to the position of the matched document

identity. However, the main drawback is that the number of the documents must be fixed beforehand, which contradicts

the original purpose of VDB, i.e., the client can perform the data updating operations in a verifiable manner.

In order to fill the gap between VDB and keyword search, we present a novel VDB scheme to support keyword search.

Our main idea is to insert an additional layer for the traditional vector commitment, where the distinct keyword set is

assigned into the vector commitment. That is, each position of vector commitment is used to index a distinct keyword w at

the additional layer of vector commitment (as shown in Fig. 1). More precisely, each position x of vector commitment can be

used to search all the document identifiers DB w

that contain a given keyword w . Similar with [10,34] , a new TSet instance

is constructed to perform keyword-based search, which supports efficient uploading for each key-document identifier pair

in an “on-the-fly” fashion.

Once a token of keyword w is received, the server can firstly perform search over the searchable keyword-index to obtain

a pair of position/document identifiers. Then the position can be used to verify the integrity of documents based on vector

commitment [12] . Note that v i in Fig. 1 represents the document F i . In the real applications, the exact data that is placed

into the commitment is the hash value of encrypted version F i .

3.2. A Concrete VDB Scheme with keyword search

In this section, we present a novel VDB construction supporting efficient keyword-based search based on the primitives

of vector commitment and searchable encryption.

We firstly present some notations. Assuming that k is the system security parameter. A database DB = (id i , W i)
d
i =1

consists

of document identifier/keyword set pairs, where d denotes the documents number of he whole database. Let DB w

refers to a

22 M. Miao et al. / Information Sciences 475 (2019) 18–28

set of document identifiers that contain keyword w . Let F : {0, 1} λ × {0, 1} λ �→ {0, 1} λ is a pseudorandom function. In addition,

Let G 1 and G 2 be two groups where | G 1 | = | G 2 | = q and g is a generator of G 1 . Let e be a bilinear map, H be a secure hash

function in G 1 , and P be a permutation in range [1, q].

• Setup (1 k , DB) : The client randomly chooses q elements z i ∈ R Z p and computes h i = g z i , h i, j = g z i z j , where

1 ≤ i 	 = j ≤ q . Then, he randomly chooses secret key y ∈ R Z p and then computes Y = g y . The public parameter PP =
(p, q, G 1 , G 2 , H, e, g, { h i } 1 ≤i ≤q , { h i, j } 1 ≤i, j≤q,i 	 = j) , and the message space M = Z p .

1. The client initializes an array TSet that each element consists of a pair of (key , value), where key refers to an identi-

fier of element and the value represents the ciphertext of keyword/document identifier pair. Let W = ∪

d
i =1

W i be the

distinct keyword set of DB, K S and K T be the keys of PRF F . The detail is presented as follows:

• For each keyword w ∈ W and the corresponding document identifiers DB w

, the client computes the following val-

ues: K e = F (K S , w) , stag w

= F (K T , w) and e w

= Enc(K e , x || DB w

)) where x is the assigned index for keyword w by

P (ord (w)). 2 Then he assigns TSet [stag w

] = e w

.

• The client generates a Bloom filter BF and inserts all keyword tokens stag into it, which can ensure the verifiability

of search.

• Assuming that n i is the number of document identifiers in DB w i
. A Merkle hash tree (MHT) is generated, where

each leaf node is allocated with a hash value h (x i || w i || n i). We denote the of MHT as φ root of MHT as φ.

2. Assume that T = 0 is the initial counter, the client generates the commitment C R =

∏ q
i =1

h
v i
i

on the original database

vector (v 1 || DB w P(1)
, v 2 || DB w P(2)

, · · · , v q || DB w P(q)
) , where DB w P(i)

represents all document identifiers for keyword w P (i) .

Given C (T) to be the commitment on the current database vector that is obtained from the original database by

updating T times. Specially, C (0) = C R and C −1 = C R . The client computes H 0 = H(C −1 , C
(0) , 0) y and sends it to the

server. The server first checks the validity of H 0 , the server generates C 0 = H 0 C
(0) . Also, the server inserts the tuple

(H 0 , C −1 , C
(0) , 0) into aux .

Finally, the public key PK = (PP , Y, C R , C 0 , BF , MHT , φ) and the auxiliary information S = (PP , aux , DB, TSet) are up-

loaded to the server and the private key SK = { y, K S , K T } is stored locally by the client.

• Query (PK , S , w, x) : Suppose the client wants to search all the documents that contain a given keyword w . When input

the key (K S , K T) and w , the client firstly computes stag w

= F (K T , w) and sends it to the server. The detailed procedure

will be performed as follows:

1. Once the server receives the search token stag w

, it performs search over TSet and returns t = TSet [stag w

] to the

client. Then the client computes K e = F (K S , w) and obtains x || DB w

= Dec(K e , t) .

2. Assume that PK = (PP , Y, C R , C T , BF , MHT , φ) is the latest public key. Upon receiving the queried index x , the server

computes π(T)
x =

∏

1 ≤ j ≤q, j 	 = x h
v (T)

j

x, j
and sends back the proof τ = (v (T)

x , π(T)
x , H T , C T −1 , C

(T) , T , BF , φ) .

• Verify (PK , x, τ) : The verify can be performed in the two phases:

1. Firstly, the client verifies the integrity of search result, i.e., DB w

. There are two steps needed to perform:

• When the search result is empty, the client checks whether BF (stag w

) = 1 holds. If not, the process terminates

and the client accepts the search result.

• When the result is not empty, the client can verifies the completeness by checking h (x || w || n x) with the root of MHT

φ, where n x is obtained by decrypting ciphertext e . Note that the correctness of search result can be achieved by

the properties of vector commitment in the following process.

2. The client parses the proofs τ = (v (T)
x , π(T)

x , H T , C T −1 , C
(T) , T) . Any verifier (including himself) could verify the correct-

ness of τ by checking the two equations 3 : e (H T , g) = e (H(C T −1 , C
(T) , T) , Y) and e (C T /H T h

v (T)
x

x , h x) = e (π (T)
x , g) . If so,

the verifier outputs v (T)
x . Otherwise, a terminator ⊥ is returned.

• Update (SK , w, x, v ′ x) : Given a keyword w , the client firstly obtains the corresponding indicator x , and then retrieves all

the corresponding document identifiers DB w

. For each x ∈ DB w

, the server returns the latest data record v x and the cor-

responding proof τ to the client. If Verify (PK , x, τ) = v x 	 = ⊥ holds, the client adds 1 to T and computes C (T) =

C T−1
H T−1

h
v ′ x −v x
x

and t ′ x = H T = H(C T −1 , C
(T) , T) y . Finally, (t ′ x , v ′ x) is sent to the server. If t ′ x is valid, the server generates C T = H T C

(T) and

updates the current public key as PK = (PP , Y, C R , C T , BF , MHT , φ) . Finally, the server replaces v x by v ′ x at the position of

x , i.e., DB x ← v ′ x . and inserts (t ′ x = H T , C T −1 , C
(T) , T) into aux .

3.3. The enhanced construction with conjunctive query

In the above-mentioned construction, the client can perform single keyword search over VDB scheme, which makes it

more useful in real-world scenarios. Furthermore, we extend the basic construction to multi-keyword setting by adopting

OXT protocol in [10] . The details of the proposed construction can be describing as follows:

• Setup (SK , PP , DB) : On input the security parameter λ, the client (data owner) randomly selects keys K S , K T for PRF F and

K X , K I , K Z for PRF F p (F p : {0, 1} ∗→ Z ∗p). Then he randomly chooses q elements z i ∈ R Z p and computes h i = g z i , h i, j = g z i z j ,
2 The ord (w) refers to the numeric order of w in the whole keyword set W .
3 If the verifier is the data owner, then he requires only to check whether the equation H T = H(C T−1 , C

(T) , T) y holds.

M. Miao et al. / Information Sciences 475 (2019) 18–28 23

where 1 ≤ i 	 = j ≤ q . Furthermore, he randomly chooses secret key y ∈ R Z p and computes the corresponding public key

Y = g y . Finally, The public parameter of system can be described as PP = (p, q, G 1 , G 2 , H, e, g, { h i } 1 ≤i ≤q , { h i, j } 1 ≤i, j≤q,i 	 = j)
and the secret key is SK = (y, K S , K T , K X , K I , K Z) . The client generates the encrypted database VDB with the following

Algorithm 1 .

Algorithm 1 Setup (SK , PP , DB) .

Input SK , PP , DB

Output VDB , PK , S

1: TSet , XSet , Token ← φ
2: for w ∈ W do

3: C w

← φ; c ← 1 ; T ← 0

4: K e ← F (K S , w) ; T w

← F (K T , w) ; Token ← Token ∪ { T w

}
5: for ind ∈ DB w

do

6: xind ← F p (K I , ind) ; z ← F p (K Z , w ‖ c)
7: l ← F (T w

, c) ; e ← Enc (K e , x w

|| ind) ; y ← xind · z −1

8: TSet [l] = (e, y) ; C w

← C w

∪ { e }
9: xtag w

← g F p (K X ,w) ·xind ; XSet ← XSet ∪ { xtag w

}
10: c ← c + 1

11: end for

12: Compute Bloom filter value: BF w (C w

)

13: l ← F (T w

, 0) , TSet [l] ← (BF w (C w

) , H K e (| C w

| , BF w (C w

)))

14: end for

15: Compute Bloom filter values: BF X (XSet) , BF T (Token)

16: Compute vector commitment:

17: C R ←

∏ q
i =1

h
v i
i

, where v i || DB w P(i)
and i ∈ [1 , q]

18: C (0) = C R , C −1 = C R , H 0 ← H(C −1 , C
(0) , 0) y

19: aux ← (H 0 , C −1 , C
(0) , 0)

20: Set VDB ← { TSet , XSet , Token , BF X (XSet) , BF T (Token) }
21: PK = (PP , Y, C R , C 0 , BF , φ)

22: S = (PP , aux , DB, TSet)

23: return { VDB , PK , S }

• TokenGen (̄w , SK) : Assume that the client would like to perform search over a given keyword set w̄ = (w 1 , w 2 , · · · , w d) .

For simplicity, w 1 can be seen as the sterm, the search token T w̄

is generated in Algorithm 2 .

Algorithm 2 TokenGen (̄w , SK) .

Input T w̄

, SK

Output T w̄

1: On input the key (K S , K X , K I , K Z , K T) and the queried keyword w̄ = (w 1 , · · · , w d) ,the client generates the search token as

follows:

2: T q ← F (K S , w 1)

3: for c = 1 , 2 , . . . until the server stops do

4: for i = 2 , . . . , d do

5: xtoken [c, i] ← g F p (K Z ,w 1 || c) ·F p (K X ,w i)

6: end for

7: xtoken [c] = xtoken [c, 2] , . . . , xtoken [c, d]

8: end for

9: T w̄

← (T q , xtoken [1] , xtoken [2] , . . .)

• Query (T w̄

, VDB , PK) : On receiving the client’s search token T w̄

, the server performs search over VDB and returns the

result R along with the corresponding proof proof in Algorithm 3 .

• Verify (R w 1
(R) , proof , τ) : The verification of search result can be divided into two steps: Firstly, the verifier check the

completeness and correctness of document identifiers; Secondly, the integrity of document contents will be done. The

details of this process is shown in Algorithm 4 .
′
• Update (SK , w, x, v x) : This algorithm is the same as the one in the basic construction. Thus, we omit it here.

24 M. Miao et al. / Information Sciences 475 (2019) 18–28

Algorithm 3 Query (T w̄

, VDB , PK) .

Input T w̄

, VDB , PK

Output R w 1
, R , proof

1: R w 1
, R , B , proof ← φ

2: l ← F (T w 1
, 0)

3: (BF w (C w 1
) , H(K e , | C w 1

| ,
BF w (C w 1

))) ← TSet [l])

4: for c = 1 , 2 , · · · do

5: l ← F (T w 1
, c)

6: (e c , y c) ← TSet [l]

7: R w 1
← R w 1

∪ { e c }
8: end for

9: if R w 1
= φ then

10: proof 1 ← BF T (Token)

11: return proof 1 and exit

12: else

13: x w

← Dec(K e , e c) (∀ e c ∈ R w 1
)

14: π(T)
x w ←

∏

1 ≤ j ≤q, j 	 = x w h
v (T)

j

x w , j

15: τ = (v (T)
x w , π

(T)
x w , H T , C T −1 , C

(T) , T)

16: end if

17: for c = 1 , · · · , | R w 1
| do

18: for i = 2 , · · · , d do

19: b[c, i] ← xtoken [c, i] y c

20: end for

21: if ∀ i = 2 , . . . , d : b[c, i] ∈ XSet then

22: R ← R ∪ { e c } ; B ← B ∪ { b[c, i] }
23: end if

24: end for

25: if R 	 = φ then

26: proof 2 ← BF X (XSet)

27: end if

28: proof ← { BF w (C w

) , { BF X (XSet) , { proof i } i =1 , 2 }
29: return (R w 1

, R , τ, proof)

Algorithm 4 Verify (R w 1
(R) , proof , τ) .

Input R w 1
(R) , proof , τ

Output Accept or Re ject

1: Verifiability of Document Identities:

2: Case 1 : R w 1
= �

3: BF w 1 (T w

) = 1

4: Case 2: R w 1
	 = �

5: H K e (| C w 1
| , BF w (C w 1

))
? = H K e (| R w 1

| , BF w (C w 1
))

6: for i = 1 , 2 , · · · , | R w 1
| do

7: if BF w (ind i) 	 = 1 then

8: Re ject and exit

9: end if

10: end for

11: if R = � then

12: for i = 1 , 2 , · · · , | R w 1
| do

13: xind ← F p (K I , ind i)

14: for j = 2 , · · · , d do

15: xtag [i, j] ← g F p (K X ,w j) ·xind

16: xtag [i] ← xtag [i] ∪ xtag [i, j]

17: end for

18: if BF X (xtag[i]) = 1 then

19: return Re ject and exit

20: end if

21: end for

22: else

23: The client select all ind ∈ R w 1
− R

24: The remaining operations are the same as the above

case.

25: end if

26: Verifiability of Document Contents:

27: The verifier checks the following two equations:

28: e (H T , g) = e (H(C T −1 , C
(T) , T) , Y)

29: e (C T /H T h
v (T)

x
x , h x) = e (π (T)

x , g)

30: return Accept or Re ject

4. Security and efficiency analysis

4.1. Security analysis

Theorem 4.1. The Tset instantiation � used in our scheme is L T -adaptively secure by assuming that F is secure pseudorandom

function.

Proof 1. Similar to [10] , we present the security analysis by designing a simulator. That is, we prove that Real
∑

A (λ) is

computationally indistinguishable from Ideal
∑

A , S (λ) . In other words, it means that a simulator S can exactly simulate the

whole protocol with only the leakage information, thus completes the proof.

The simulator algorithm S can be performed as follows: S takes as input the leakage L T = (| DB w

| , N =

∑

w ∈ W

| DB w

|) and

all the transcripts of adversary’s query T [q]. The initialization S(L T) generates TSet as an N array just like the TSetSetup

algorithm of Real Game. What is different is that S fills all the element of array with the same length random bitstrings.

More specifically, S generates a two-dimensional array T [w, c] to store all the N records. (It is used to make a response of

A .) Then, S sends TSet to A . For each query q from A , S retrieves a list t = (T [q, 1] , · · · , T [q, | DB q |]) . If the element F (stag w

,

c) was queried before assigning value, S aborts. Note that the F is a pseudo random function, it is indistinguishable between

the Real Game and the modified one where stag w

are replaced by random elements from the range of F . On the other hand,

M. Miao et al. / Information Sciences 475 (2019) 18–28 25

Table 1

Efficiency comparison.

Schemes Scheme [11] Scheme [12] Our scheme

Model Amortized Amortized Amortized

Assumption CDH CDH CDH

ResistFAUAttack × √ √

Accountability × √ √

KeywordSearch × × √

querycost(Server) (q − 1)(E + M) (q − 1)(E + M) (q − 1)(E + M) + D + H

Verifycost(Verifier) E + M + I + 2 P E + 2 M + I + 4 P 2 E + 2 M + I + 4 P + O (log 2 q) H

Updatecost(Client) E + M 2 E + 2 M + I 2 E + 2 M + I + 2 H

C

because any given T [w, c] is assigned randomly to the TSet , the view of A of each T [w, c] is identical to the Real Game. Thus,

we prove that simulator S can perfectly simulate the protocol.

Theorem 4.2. The proposed VDB scheme can achieve secure keyword search with the Squ-CDH assumption.

Proof 2. Similar to [11] , we present the security proof by using reduction method. Suppose that the proposed VDB scheme

cannot achieve verifiable update in the case of keyword search, which means that there exists a adversary A that can

convince the client on a false opening with a non-negligible advantage ε. Thus, we can build a efficient algorithm A

′ that

can use A as a subroutine to break the Squ-CDH assumption. That is, on input (g, g a), A

′ can output g a
2
.

A

′ firstly selects a keyword w and then chooses the corresponding index i ∈ R Z q as a guess for the index i , where A
can break the position binding. Then, A

′ randomly chooses z j ∈ Z p for each j ∈ [1, q] and j 	 = i , and computes the following

values:

∀ j ∈ [1 , q] , j 	 = i, h j = g z j , h i, j = (g a) z j , h i = g a

∀ k, j ∈ [1 , q] , k, j 	 = i, h k, j = g z k z j

A

′ sets PP = (p, q, G 1 , G 2 , H, e, g, { h i } , { h i, j }) , where j ∈ [1, q] and j 	 = i . In addition, A

′ randomly selects private key SK

as y ∈ R Z q and generates Y = g y . Given a database DB with the keyword set W , A

′ generates the corresponding keyword-

based index by simply running the TSetSetup algorithm. Then, he generates the Bloom filter BF and Merkel hash tree MHT

with the information on keyword and the corresponding document identities. Finally, A

′ computes the root commitment

 R =

∏ q
i =1

h
v i
i

, the signature H 0 = H(C R , C R , 0) y and the current public key C 0 = H 0 C R . Set PK = (PP , Y, C R , C 0 , BF , MHT , φ)

and S = (PP , aux , DB, TSet) . A

′ sends it to A . Note that PK and S have the same distribution as the real protocol. A

′ simply

runs the real Query (PK , S , w, i) and Update (SK , w, i, v ′
i
) algorithms to answer the verify and update queries of A . Due that

the Update (SK , w, x, v ′
i
) algorithm needs to keep the private key, anyone cannot perform the update operation except the

A

′ . Thus, it can resist on the FAU attack as stated in [12] .

Assume that (i ∗, τ ∗) is the returned tuple by the adversary A , where τ ∗ = (v ∗, π ∗, �T) . If A can win in breaking the

security of VDB scheme, we have v ∗ 	 = ⊥ , v ∗ 	 = v (T)
i ∗ and e (C (T) , h i ∗) = e (h

v (T)
i ∗

i ∗ , h i ∗) e (π
(T)
i ∗ , g) = e (h v

∗
i ∗ , h i ∗) e (π

∗, g) .
If i 	 = i ∗, A

′ aborts the simulation. Otherwise, with h i = g a , we can compute

g a
2 = (π ∗/π (T)

i ∗) (v
(T)
i ∗ −v ∗) −1

.

The success probability of A

′ is ε/ q .

4.2. Comparison

We give the comparison of computational cost among the proposed scheme, Catalano-Fiore’s scheme [11] and Chen

et al.’s scheme [12] . In Setup phase, all the above mentioned schemes need to perform some expensive operations for

generating system parameters. Although our scheme introduces slight computation overload to build the searchable index,

it is a one-time work and can be done in an off-line way. Besides, our construction can keep the benefit of resisting on FAU

attack as [12] , while supporting keyword-based search in VDB setting. The computation cost on client side is independent

with the whole size of the oursourced database based on vector commitment technique. More precisely, the client just

requires to perform a few (static) computation operations in data update and verify phase, the server invests computation

of proof for updated record, which is the most expensive computation overhead (All three schemes hold this property).

We present the comparison on the computation overhead among the abovementioned schemes in Table 1 . We mainly

focus on the computation cost in data update and verify phase. Some notations are introduced. We denote M as the multi-

plication operation in group G 1 (or G 2), by E a modular exponentiation in G 1 , I an inversion operation in G 1 , D a decryption

operation of symmetric encryption, H an operation of hash, P a pairing operation, and F a pseudo-random function. Here,

some lightweight operations are omitted. We remark that our scheme can achieve keyword search for VDB by introducing

some slightly computation overload. That is, the client just needs to a hash operation to generate the search token and

a decrypt operation to obtain the indicator (index of vector commitment) in the phrase of Search. In addition, the client

performs hash operation on the documents at the beginning of verification.

26 M. Miao et al. / Information Sciences 475 (2019) 18–28

Fig. 2. Time cost of Query for both datasets: (a) Enron dataset; (b) The synthetic dataset.

Fig. 3. Time cost of Verify for both datasets: (a) Enron dataset; (b) The synthetic dataset.

5. Performance evaluation

In this section, we provide an overall experimental evaluation of the proposed basic construction. The experiments are

deployed by invoking Java Pairing-based Cryptography (JPBC) library and OpenSSL library on a LINUX PC equipped with Intel

Xeon E5-1620 3.50 GHz and 16G memory.

Our experiments are conducted based on a real-world dataset: Enron Email Dataset [8] and a synthetic dataset. Specifi-

cally, we choose all the keywords that belong to less than 20 documents to construct the experimental database. The total

number of keywords is q = 6459 and the keyword-document pairs is 65429. For the synthetic dataset, we assume that

q = 10 0 , 0 0 0 . It means that there are 10 0,0 0 0 distinct keywords in the whole database.

In the following experiments, we mainly focus on computation overhead comparison between our basic construction

and Chen et al. scheme [12] . Note that our scheme can be seen as an extension for keyword search based on [12] . We

provide the performance evaluation of Query, Verify and Update algorithms for our scheme and Chen et al. [12] . The detailed

experimental results are shown in Figs. 2–4 , respectively.

Fig. 2 shows the computation overhead of the Query algorithm based on different dataset. It can be clearly seen that the

computational overhead of our scheme is slightly more expensive than that of scheme [12] . The reason is that our scheme

requires to perform additional keyword search operations. Note that the query overhead increases with the size of vector

commitment, i.e., q .

As shown in Fig. 3 , the verification cost of both the two schemes is linear with the counting count. Our construction re-

quires more computation cost than scheme [12] . This is because that our construction performs 1 signature verification and

M. Miao et al. / Information Sciences 475 (2019) 18–28 27

Fig. 4. Time cost of Update for both datasets: (a) Enron dataset; (b) The synthetic dataset.

O (log 2 q) hash operation to verify the integrity of document identifier. Note that our scheme can support kinds of keyword

search, which makes it more suitable to be applied in real-world data outsourcing scenario.

In Fig. 4 , we provide the performance comparison of Update operation in client side. The experimental results show that

our scheme is as efficient as that of scheme [12] . Actually, our scheme requires just a few additional hash operation and it

has almost no effect on the system performance.

6. Conclusion

The notion of VDB is a useful primitive to address the challenge of verifiable outsourcing of storage in cloud comput-

ing. Nevertheless, none of the existing solutions can support efficient keyword search on the database. In this paper, we

propose the first VDB scheme that also achieved efficient keyword search by incorporating the primitives of VDB and SSE.

Furthermore, we show that our construction can be easily extended to multi-keyword setting. Security and efficiency anal-

ysis demonstrate that the proposed VDB scheme can not only achieve the desired security properties but also provide a

comparable overhead for real applications.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 61572382 , 61702401 , and U1405255), China

111 Project (No. B16037), China Postdoctoral Science Foundation (No. 2017M613083), Natural Science Basic Research Plan in

Shaanxi Province of China (Nos. 2016JZ021 and 2018JQ6001).

References

[1] D. Agrawal , A. El Abbadi , F. Emekçi , A. Metwally , Database management as a service: challenges and opportunities, in: Proceedings of the 25th Inter-
national Conference on Data Engineering, ICDE’09, IEEE, 2009, pp. 1709–1716 .

[2] B. Applebaum , Y. Ishai , E. Kushilevitz , From secrecy to soundness: efficient verification via secure computation, in: Proceedings of the 37th International
Colloquium on Automata, Languages and Programming, ICALP’10, Springer, 2010, pp. 152–163 .

[3] M. Azraoui , K. Elkhiyaoui , M. Önen , R. Molva , Publicly verifiable conjunctive keyword search in outsourced databases, in: 2015 IEEE Conference on
Communications and Network Security, CNS’15, IEEE, 2015, pp. 619–627 .

[4] F. Bao , R.H. Deng , H. Zhu , Variations of diffie-hellman problem, in: Proceedings of the 5th International Conference on Information and Communica-

tions Security, ICICS’03, 2003, pp. 301–312 .
[5] S. Benabbas , R. Gennaro , Y. Vahlis , Verifiable delegation of computation over large datasets, in: Advances in Cryptology,CRYPTO’11, Springer, 2011,

pp. 111–131 .
[6] R. Bost, P.-A. Fouque, D. Pointcheval, Verifiable dynamic symmetric searchable encryption: Optimality and forward security, 2016, CryptologyePrint

Archive, Report 2016/062). https://eprint.iacr.org/2016/062 .
[7] R. Bost , B. Minaud , O. Ohrimenko , Forward and backward private searchable encryption from constrained cryptographic primitives, in: Proceedings of

the 24th ACM Conference on Computer and Communications Security, CCS’17, ACM, 2017, pp. 1465–1482 .

[8] CALO, Enron Email Dataset, (http://www.cs.cmu.edu/ ∼enron/). Accessed April 10, 2018.
[9] D. Cash , J. Jaeger , S. Jarecki , C.S. Jutla , H. Krawczyk , M. Rosu , M. Steiner , Dynamic searchable encryption in very-large databases: data structures

and implementation, in: Proceedings of the 21st Annual Network and Distributed System Security Symposium, NDSS’14, The Internet Society, 2014,
pp. 23–26 .

[10] D. Cash , S. Jarecki , C.S. Jutla , H. Krawczyk , M. Rosu , M. Steiner , Highly-scalable searchable symmetric encryption with support for boolean queries, in:
Advances in Cryptology, CRYPTO’13, Springer, 2013, pp. 353–373 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100002858
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0005
https://eprint.iacr.org/2016/062
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0006
http://www.cs.cmu.edu/~enron/
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0008

28 M. Miao et al. / Information Sciences 475 (2019) 18–28

[11] D. Catalano , D. Fiore , Vector commitments and their applications, in: Proceedings of the 16th International Conference on Practice and Theory in
Public-Key Cryptography, PKC’13, Springer, 2013, pp. 55–72 .

[12] X. Chen , J. Li , X. Huang , J. Ma , W. Lou , New publicly verifiable databases with efficient updates, IEEE Trans. Dependable Sec. Comput. 12 (5) (2015)
546–556 .

[13] X. Chen , J. Li , J. Ma , Q. Tang , W. Lou , New algorithms for secure outsourcing of modular exponentiations, IEEE Trans. Parallel Distrib. Syst. 25 (9) (2014)
2386–2396 .

[14] X. Chen , J. Li , J. Weng , J. Ma , W. Lou , Verifiable computation over large database with incremental updates, IEEE Trans. Comput. 65 (10) (2016)

3184–3195 .
[15] R. Curtmola , J.A. Garay , S. Kamara , R. Ostrovsky , Searchable symmetric encryption: improved definitions and efficient constructions, in: Proceedings of

the 13th ACM Conference on Computer and Communications Security, CCS’06, 2006, pp. 79–88 .
[16] S. Faber , S. Jarecki , H. Krawczyk , Q. Nguyen , M. Rosu , M. Steiner , Rich queries on encrypted data: beyond exact matches, in: Proceedings of the 20th

European Symposium on Research in Computer Security, Computer Security, ESORICS’15, Springer, 2015, pp. 123–145 .
[17] B.A. Fisch , B. Vo , F. Krell , A. Kumarasubramanian , V. Kolesnikov , T. Malkin , S.M. Bellovin , Malicious-client security in blind seer: a scalable private

DBMS, in: 2015 IEEE Symposium on Security and Privacy, SP’15, IEEE, 2015, pp. 395–410 .
[18] C. Gao , S. Lv , Y. Wei , Z. Wang , Z. Liu , X. Cheng , M-SSE: an effective searchable symmetric encryption with enhanced security for mobile devices, IEEE

Access 6 (2018) 38860–38869 .

[19] R. Gennaro , C. Gentry , B. Parno , Non-interactive verifiable computing: outsourcing computation to untrusted workers, in: Advances in Cryptology,
CRYPTO’10, Springer, 2010, pp. 465–482 .

[20] S. Kamara , T. Moataz , Boolean searchable symmetric encryption with worst-case sub-linear complexity, in: Advances in Cryptology, EUROCRYPT’17,
Springer, 2017, pp. 94–124 .

[21] S. Kamara , C. Papamanthou , Parallel and dynamic searchable symmetric encryption, in: Proceedings of the 17th International ConferenceFinancial
Cryptography and Data Security, FC’13, Springer, 2013, pp. 258–274 .

[22] K.S. Kim , M. Kim , D. Lee , J.H. Park , W. Kim , Forward secure dynamic searchable symmetric encryption with efficient updates, in: Proceedings of the

24th ACM Conference on Computer and Communications Security, CCS’17, ACM, 2017, pp. 1449–1463 .
[23] F. Krell , G. Ciocarlie , A. Gehani , M. Raykova , Low-leakage secure search for boolean expressions, in: Proceedings of the Cryptographers’ Track at the

RSA Conference 2017 Topics in Cryptology, CT-RSA’17, Springer, 2017, pp. 397–413 .
[24] K. Kurosawa , Y. Ohtaki , How to update documents verifiably in searchable symmetric encryption, in: Proceedings of the 12th International Conference

on Cryptology and Network Security, CANS’13, Springer, 2013, pp. 309–328 .
[25] H. Li , D. Liu , Y. Dai , T.H. Luan , X.S. Shen , Enabling efficient multi-keyword ranked search over encrypted mobile cloud data through blind storage, IEEE

Trans. Emerg. Top. Comput. 3 (1) (2015) 127–138 .

[26] H. Li , D. Liu , Y. Dai , T.H. Luan , S. Yu , Personalized search over encrypted data with efficient and secure updates in mobile clouds, IEEE Trans. Emerg.
Top. Comput. 6 (1) (2018) 97–109 .

[27] J. Li , X. Chen , M. Li , J. Li , P.P.C. Lee , W. Lou , Secure deduplication with efficient and reliable convergent key management, IEEE Trans. Parallel Distrib.
Syst. 25 (6) (2014) 1615–1625 .

[28] J. Li , X. Huang , J. Li , X. Chen , Y. Xiang , Securely outsourcing attribute-based encryption with checkability, IEEE Trans. Parallel Distrib. Syst. 25 (8) (2014)
2201–2210 .

[29] J. Li , Z. Liu , X. Chen , F. Xhafa , X. Tan , D.S. Wong , L-Encdb: a lightweight framework for privacy-preserving data queries in cloud computing,

Knowl.-Based Syst. 79 (2015) 18–26 .
[30] M. Miao , J. Ma , X. Huang , Q. Wang , Efficient verifiable databases with insertion/deletion operations from delegating polynomial functions, IEEE Trans.

Inf. Forensics Secur. 13 (2) (2018) 511–520 .
[31] M. Miao , J. Wang , J. Ma , W. Susilo , Publicly verifiable databases with efficient insertion/deletion operations, J. Comput. Syst. Sci. 86 (2017) 49–58 .

[32] D.X. Song , D.A. Wagner , A. Perrig , Practical techniques for searches on encrypted data, in: 20 0 0 IEEE Symposium on Security and Privacy, SP’00,
Springer, 20 0 0, pp. 44–55 .

[33] E. Stefanov , C. Papamanthou , E. Shi , Practical dynamic searchable encryption with small leakage, in: Proceedings of the 21st Annual Network and

Distributed System Security Symposium, NDSS’14, The Internet Society, 2014, pp. 72–75 .
[34] S. Sun , J.K. Liu , A. Sakzad , R. Steinfeld , T.H. Yuen , An efficient non-interactive multi-client searchable encryption with support for boolean queries, in:

Proceedings of the 21st European Symposium on Research in Computer Security, ESORICS’16, in: LNCS, 9878, Springer, 2016, pp. 154–172 .
[35] H. Wang , Identity-based distributed provable data possession in multicloud storage, IEEE Trans. Serv. Comput. 8 (2) (2015) 328–340 .

[36] J. Wang , X. Chen , X. Huang , I. You , Y. Xiang , Verifiable auditing for outsourced database in cloud computing, IEEE Trans. Comput. 64 (11) (2015)
3293–3303 .

[37] J. Wang , X. Chen , J. Li , J. Zhao , J. Shen , Towards achieving flexible and verifiable search for outsourced database in cloud computing, Future Gener.

Comp. Syst. 67 (2017) 266–275 .
[38] Y. Zhang , R.H. Deng , J. Shu , K. Yang , D. Zheng , TKSE: trustworthy keyword search over encrypted data with two-side verifiability via blockchain, IEEE

Access 6 (2018) 31077–31087 .
[39] Z. Zhang, X. Chen, J. Li, X. Tao, J. Ma, Hvdb: a hierarchical verifiable database scheme with scalable updates, J. Ambient Intell. Human. Comput. (2018)

1–13, doi: 10.1007/s12652- 017- 0523- 3 .

http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30790-4/sbref0036
https://doi.org/10.1007/s12652-017-0523-3

	Publicly verifiable database scheme with efficient keyword search
	1 Introduction
	1.1 Our contribution
	1.2 Related work
	1.2.1 Verifiable database
	1.2.2 Searchable encryption

	1.3 Organization

	2 Preliminaries
	2.1 Mathematical assumption
	2.2 Searchable symmetric encryption
	2.3 Tuple set

	3 New efficient VDB scheme with support for keyword search
	3.1 High description
	3.2 A Concrete VDB Scheme with keyword search
	3.3 The enhanced construction with conjunctive query

	4 Security and efficiency analysis
	4.1 Security analysis
	4.2 Comparison

	5 Performance evaluation
	6 Conclusion
	 Acknowledgments
	 References

