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Coronavirus disease (COVID-19) is highly contagious and pathogenic. Currently, the diagnosis of COVID-19 is based on nucleic
acid testing, but it has false negatives and hysteresis. 3e use of lung CT scans can help screen and effectively monitor diagnosed
cases.3e application of computer-aided diagnosis technology can reduce the burden on doctors, which is conducive to rapid and
large-scale diagnostic screening. In this paper, we proposed an automatic detection method for COVID-19 based on spatio-
temporal information fusion. Using the segmentation network in the deep learning method to segment the lung area and the
lesion area, the spatiotemporal information features of multiple CTscans are extracted to perform auxiliary diagnosis analysis.3e
performance of this method was verified on the collected dataset. We achieved the classification of COVID-19 CTscans and non-
COVID-19 CT scans and analyzed the development of the patients’ condition through the CT scans. 3e average accuracy rate is
96.7%, sensitivity is 95.2%, and F1 score is 95.9%. Each scan takes about 30 seconds for detection.

1. Introduction

From the end of 2019, coronavirus disease (COVID-19) has
disseminated around the world and become a global chal-
lenge, leading the World Health Organization to declare the
COVID-19 outbreak a pandemic [1–3]. Up to now, no
clinically approved therapeutic is available for treatment [4].
3e findings showed that COVID-19 virus spreads from
person to person. It is necessary to block the spread of
COVID-19 by isolating patients, tracing, and isolating close
contacts [5]. 3erefore, a study of a timely and effective
diagnosis method that can quickly screen as many scans as
possible is needed.

At present, the diagnosis of COVID-19 mainly depends
on the nucleic acid kit for reverse transcription-polymerase

chain reaction (RT-PCR) to determine the presence of viral
nucleic acid [6]. As a disease diagnosis, especially infectious
diseases, the final diagnosis still needs to rely on the etiology.
Although RT-PCR is considered the gold standard for
COVID-19 diagnosis, there are still some influencing fac-
tors, such as the degree of standardization of sample col-
lection and the time of sample collection [7]. Also, whether
RT-PCR can detect COVID-19 depends on the viral load. If
the sampling site does not contain viruses nor has a low viral
load, the nucleic acid test will be prone to false negatives.

Since some cases have imaging features, but nucleic acid
detection has hysteresis, medical imaging methods (such as
chest X-ray (CXR) and computer tomography (CT)) can
play a significant role in the diagnosis of COVID-19 [8, 9].
Besides, nucleic acid testing can only diagnose whether a
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patient has COVID-19. But it cannot judge the condition,
while medical imaging can [10]. For patients with COVID-
19, accurate monitoring of disease progression is a vital
component of disease management. For suspected cases,
such as close contacts of COVID-19 patients whose nucleic
acid test is negative, imaging can be used for monitoring
[8, 9].

In general, medical imaging methods are effective means
to diagnose COVID-19 and monitor disease progression.
Real-time analysis of the patient’s condition is necessary for
doctors to determine effective treatment methods. Accurate
and quantitative analysis of the disease can help doctors
prescribe the right medicine.

Traditional imaging diagnosis depends on the experience
of doctors. COVID-19 is a new type of infectious disease,
and current research has summarized the imaging charac-
teristics of this type of disease [9]. Usually, one CT scan
contains multiple slices. It takes 5–15 minutes for doctors to
examine one CTscan. Repetitive work will cause the doctor’s
mental fatigue. Rapid and large-scale detection and
screening cannot be performed. Doctors can only use
subjective judgments to analyze the development of patients’
conditions, which cannot be intuitive and quantitative.

In recent years, deep learning has achieved great success
in the area of computer vision, which provides new solutions
to the automated processing of medical images [11–15].
Artificial intelligence technologies, especially deep learning
tools, can be developed to help radiologists perform data
classification, quantification, and trend analysis. If the CT
scan shows the possibility of disease, the case can be marked
for further examination by a radiologist or clinician for
possible treatment or quarantine. Computer-aided diagnosis
(CAD) system based on CT scans can help doctors diagnose
COVID-19 and better understand disease development. It is
worth noting that CAD technology cannot replace doctors
or other medical professionals, the final diagnosis must be
judged by professionals.

In summary, nucleic acid detection has a certain mis-
diagnosis rate and hysteresis and requires a certain detection
time [10]. CT scans of the lungs can provide rapid auxiliary
diagnosis and monitor the condition of the disease. But
doctors need to spend a lot of energy to interpret the CT
slices, especially in areas with severe epidemics, requiring
large-scale rapid screening. In response to the above-
mentioned problems of the COVID-19 diagnosis and de-
tection, we proposed a method for the assisted diagnosis of
COVID-19 based on CT scans. 3is method is based on the
spatiotemporal sequence information of CT scans to realize
the detection and analysis of COVID-19 scans. Its contri-
butions are as follows:

(1) Using the fast and effective segmentation network
LinkNet and training the false positive network for
removing lesions based on the DenseNet network
structure to achieve accurate segmentation of the
lesion area;

(2) Combining the characteristics of the spatiotemporal of
CT scans, effectively monitoring the disease develop-
ment, assisting doctors intuitively understanding the

condition, and determining the diagnosis and
treatment.

Experimental results show that the auxiliary diagnosis
method has good detection and classification effects. It can
visually display the disease development and assist doctors
in clinical diagnosis and treatment.

1.1. Related Work. 3e computer-aided diagnosis system
uses imaging, medical image processing technology, and
other means combined with computer analysis and calcu-
lation to assist in diagnosis. Many applications have been
proposed in medical imaging, including segmentation and
characterization tasks.

Convolutional neural network (CNN) is developed for
the detection of breast cancer [11], brain tumor [12], pul-
monary nodules [13], intracranial aneurysm [14], and other
diseases [15]. Usually, a two-step approach is adopted, first
determining the area of interest and then reducing false
positives [15].

Chung et al. [16] gave a more detailed description of the
COVID-19 CT scans. 3ese CT scans show an extent of
irregular ground-glass opacities that progress rapidly after
COVID-19 symptom onset [16, 17]. In the early stage of the
disease, CT images show image features of multiple small
patches and interstitial changes. 3en, it develops multiple
ground glass shadows and infiltration shadows of the lungs.
In severe cases, lung consolidation may occur, and pleural
effusions are rare [18].

Fang et al. [19] compared the sensitivity of chest CT
detection with nucleic acid detection by RT-PCR. 51 patients
received initial and repeated RT-PCR tests. 3eir standard is
the diagnosis of COVID-19 infection finally confirmed by
serial RT-PCR testing. In this patient sample, the detection
rate for initial CT (50 of 51 patients (98%); 95% CI: 90%,
100%) was greater than that for first RT-PCR (36 of 51
patients (71%); 95% CI: 56%, 83%). Xie et al. [20] also have
reported a lack of sensitivity in the initial RT-PCR test.

Bernheim and Huang [21] studied 121 cases of chest CT
studies obtained in the early, middle, and late infections of
four centers in China. Studies have shown that the ap-
pearance of frosted glass on both sides and surrounding
lungs is characteristic of the disease.

Based on these image features shown in Figure 1, a few
studies have already reported deep learning to diagnose
COVID-19 pneumonia on chest radiograph or CT.

Kassania et al. [22] compared popular deep learning-
based feature extraction frameworks for automatic COVID-
19 classification. 3ey tested the combination of different
deep learning networks combined with machine learning
methods for classification. Experimental results show that
the DenseNet121 feature extractor with the bagging tree
classifier achieved the best performance with 99% classifi-
cation accuracy.

Fei et al. [23] developed a deep learning- (DL-) based
segmentation system with a human-in-the-loop (HITL)
strategy to assist radiologists for infection region segmen-
tation. By comparing the automatically divided infection
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area and the manually divided area, the average similarity
coefficient is about 91.6%.

Hemdan et al. [24] developed COVIDX-Net for diag-
nosing COVID-19 in X-ray Images.3e authors conducted a
comparative study of different deep learning architectures.
3e dataset includes 50 X-ray images, divided into 25 non-
COVID-19 images and 25 COVID-19 images. Experimental
results demonstrated VGG19 and DenseNet201 models
achieved the best performance scores among similar models,
with F1 scores of 0.89 and 0.91 for non-COVID-19 and
COVID-19, respectively. However, the dataset used in the
experiment is small.

Gozes et al. [25] presented a system that utilizes 2D and
3D deep learning models. By modifying and adapting
existing AI models (RAD Logics Inc., Boston), this study
demonstrated that rapidly developed AI-based image
analysis can achieve high accuracy in the detection of
coronavirus as well as quantification and tracking of disease
burden.

Basu et al. [26] proposed a new concept called domain
extension neural network to solve the problem that the
available COVID-19 data are rare and not easy to train. 3e
overall accuracy was 95.3%± 0.02.

Maghdid et al. [27] used the deep learning method and
transfer learning strategies to diagnose COVID-19 auto-
matically. 3e structure is a combination of CNN structure
and an improved AlexNet structure. 3e improved archi-
tecture accuracy reaches 94.10% on the X-rays and CT slice
dataset.

Hasan et al. [28] presented a promising technique for
predicting COVID-19 patients from the CTscan using CNN.
3e approach based on DenseNet is the updated CNN ar-
chitecture in the present state to detect COVID-19. 3e
results outperformed 92% accuracy, with 95% recall.

At present, there are some studies of lung CT detection,
most of them use a single CT slice, such as [28], and the
sequence features of CT scans are not fully utilized. In fact,
during the doctor’s diagnosis process, the doctor will not

judge based on a single slice. Especially when the slice is in
doubt, the slices before and after will affect the judgment.
What’s more, in addition to the study of different patients,
the analysis of CT scans of one patient during the treatment
also plays an important role for the doctor to judge the
development of the disease and the effectiveness of the
treatment method.

2. Methods

3is study was mainly divided into two parts: COVID-19
classification and detection experiment based on sequence
feature of CT scan to classify and detect; COVID-19 volume
measurement experiment based on the CT scans obtained
during one patient’s treatment. By measuring the volume of
the lesion and fusing time information of the CT scans, we
can intuitively quantify the development of the disease and
analyze the patient’s condition. 3e overall flow chart is
shown in Figure 2.

2.1. Preprocessing

2.1.1. Dataset. 3is experiment collected 445 lung CT scans
of COVID-19 and 63 healthy lung CT scans from Nanjing
Infectious Diseases Hospital (the Second Hospital of
Nanjing). 3e COVID-19 CT scans were from 142 patients.
Each patient took several times of chest CT scans during
their treatment, and the CT slice thickness was 0.625mm to
1.250mm. Nanjing Infectious Diseases Hospital is a des-
ignated hospital for COVID-19 in Jiangsu Province. 3e use
of data was approved by the Ethics Society and was only used
for this experimental study. 3e patient’s information was
kept confidential. 3e 445 cases we collected included
various stages of disease development, and each scan con-
tains hundreds of slices. Also, we selected 170 lung CTscans
randomly from the online public dataset LUNA16 [29] for
the COVID-19 classification experiment as negative samples
to form the dataset. So, the total datasets contain 445

Figure 1: 3e lesion area of COVID-19 on the CT images.
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COVID-19 scans and 233 non-COVID-19 scans. 3e data
from LUNA16 were reprocessed, the HU value was adjusted
to the range of −1200∼600, it was set to −1200 if it is less than
−1200, it was set to 600 if it is greater than 600, and then it
was normalized to 0 ∼255. 3e CT slice size is 512 ∗ 512
pixels.

2.1.2. Experiment Condition. 3eWindows-based computer
system used for this work had an Intel(R) Core(TM) i7-
8700K 3.7GHz processor with 16GB RAM.3e training and
testing process of the proposed architecture for this ex-
periment was implemented in Python using Pytorch
backend as the deep learning framework backend running
on NVIDIA GeForce GTX 1080 Ti GPU.

2.1.3. Evaluation Criteria. Taking into account the un-
evenness of the data, a single verification indicator may not
be able to summarize the performance of the algorithm. We
utilized a variety of common evaluation metrics such as
precision (PRE), recall (REC), accuracy (AUC), and F1 score
(F1).

Precision: among all the samples judged to be correct, it
is the correct proportion
Recall: among all the positive samples, it is the pro-
portion of correct judgment
F1 score: comprehensive performance indicators are
concerned about the accuracy of positive samples and
their recall
TP (true positive): the number of instances that cor-
rectly predicted
TN (true negative): the number of instances that in-
correctly predicted
FP (false positive): the number of negative instances
that predicted correctly

FN (false negative): the number of negative instances
that predicted correctly all evaluation metrics calcu-
lated as follows:

precision �
TP

TP + FP
, (1)

recall �
TP

TP + FN
, (2)

accuracy �
TP + TN

TP + TN + FP + FN
, (3)

F1 score � 2∗
recall∗ precision
recall + precision

. (4)

2.2. COVID-19 Classification. 3e rapid COVID-19 detec-
tion was based on the sequence features of COVID-19 CT
scans. 3e flow chart is shown in Figure 3. 3ere are three
steps in the experiment: lung area segmentation, lesion area
segmentation, and classification. 3e lesion area segmen-
tation step includes the false positive screening of the lesion
area. 3e lung area and the lesion area obtained during the
detection process can be used in lesion volumemeasurement
experiments.

2.2.1. Lung Segmentation. In the original CT slice, there are
other surrounding tissue parts besides the lung area we need.
Too much redundant information is in the picture, which
will interfere with training and testing. 3erefore, we first
segmented the lung area.

Previous studies have shown that U-net can be trained end-
to-end from very few images and achieve excellent performance
[30]. So, the U-net has become the most popular base network
widely used in biomedical image segmentation. To speed up the
training and processing of the network, we chose the LinkNet

Patient X

CT scan 2CT scan 1

Lesion
 segmentation

Lesion
 segmentation

Lesion
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CT scan n

Classification Volume 
measurement Classification Volume 

measurement Classification Volume 
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Analysis of patient X condition

...
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Figure 2: Overall experiment flow chart.
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network structure. 3e LinkNet network is a variant of the
U-net [31] and is a typical encoder-decoder structure. 3e
encoder is used for feature extraction and dimension reduction
of the input images, while the decoder will restore the feature
information into an image. 3e encoder and decoder con-
nection structure is shown in Figure 4. 3e encoder structure
uses residual connections.3e featuremap after introducing the
residual is more sensitive to the changes in output, and the
gradients are easier to train. 3e learning features of encoder
block i from shallow to deep can be expressed as follows:

EBi � Ei2 Ei1 ei( 􏼁 + ei( 􏼁 + Ei1 ei( 􏼁 + ei, i � 1, 2, 3, 4, (5)

where Ei1(ei) is the result after weighted convolution, EBi is
the output of the encoder block i, and also the input of the
encoder block i + 1, ei is the input of the encoder block i.

3e encoder block i and decoder block i are directly
connected to improve accuracy and reduce processing time
[31].

DBi � Di di( 􏼁, (6)

di−1 � DBI + ei. (7)

3e decoder block structure shown in Figure 4 can be
expressed as equation (6), where the Di(di) is the result after
weighted convolution,DBi is the output of the decoder block
i, and di is the input of the decoder block i. 3e input of
encoder block i − 1 can be expressed as formula (7).

3e training steps of the lung segmentation model are
shown in Figure 5. Using pretrained models for testing, we
found that when the CT slice contains ground glass shadow
in the lung area, especially the ground glass shadow in the
lung edge area, the model could not segment the lung area
accurately. To optimize the network, take the CT slices from
20 scans of COVID-19 and 10 scans of non-COVID-19
randomly as the input, supplement, and correct the label of
lung region obtained by the test to get their integral lung
label images.3en, the 20 scans in pretrained and 30 scans in
the test with their label images are used as the input of the
segmentation network to improve the robustness and reli-
ability of the model. Finally, we obtained a retrained lung
segmentation model and the lung area of other slices ob-
tained through the model test.

In order to verify the effectiveness of the segmentation
method used in this article, 10 scans were randomly selected
for lung segmentation test, of which 6 were COVID-19 scans
and 4 were non-COVID-19 scans. Among them, the
COVID-19 CT scans contain imaging features, and the le-
sions are distributed on the periphery of both lungs.3ese 10
scans were only tested for segmentation, and the model was
not modified by them, so they continued being used in the
next experiment.3e results are shown in Table 1, where M1
is the initial training model, and M2 is the model trained by
adding modified supplementary marks and unprocessed
images. IOU (intersection over union) value is used for
evaluation, as shown in equation (8), where Areamask is the

Image threshold and normalization

Training lung segmentation

Negative lung
segmentation sample

Positve lung
segmentation sample

Training lesion
segmentation Training false positive screening

Negative lesion sample Positive lesion sample

Output: COVID-19/normal Classifier: decision tree Extract features

Input

Features1
Features2
Features3
Features4
Features5
Features6

(b)

(c)
(a)

Figure 3: Flowchart of the proposed framework for computer-aided COVID-19 diagnosis. (a) Image preprocessing. (b) Training lung
segmentation, training lesion segmentation, and training DenseNet for false positive screening. (c) Extract features for classification.
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area of the marked target area, Areatest is the area of the
tested target area. By supplementing the training data, we
improved the lung area division and divided the ground
glass shadow in the edge area correctly.

IOU �
Areamask ∩ Areatest
Areamask ∪Areatest

. (8)

2.2.2. Lesion Segmentation. 3e lung segmentation network
training scans were also used as the input of the lesion
segmentation network. 3e lesions of the COVID-19 are
mainly ground glass shadows. We invited many professional
doctors from the Second Hospital of Nanjing to mark the
lesion. Based on the abovementioned test for segmentation
network, the lesion segmentation network also applies the
LinkNet model.

3e lung segment was tested using the trained lesion
segmentation network, and the lesion regions in the rest of
628 scans were segmented, and then we cropped each lesion
area. 3e test process of lesion segmentation is shown in
Figure 6. We found some negative image pieces in the

Encoderblock i

Decoderblock iei

Ei1 (ei)

Ei1 (ei) + ei

Ei2 (Ei1 (ei) + ei)

DBi

Di (di)

di

EBi

Conv [(3∗3), /2]
Conv [(3∗3)]

Conv [(3∗3)]
Conv [(3∗3)]

Conv [(1∗1)]
Full-Conv [(3∗3), ∗2]

Conv [(1∗1)]
+

+

+

+

Figure 4: 3e structure of LinkNet.
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LinkNet

Figure 5: Training process of the lung segmentation model.

Table 1: Test results of lung segmentation model.

Cases Label M1-IOU M2-IOU
Eg1 P 0.967 0.978
Eg2 P 0.934 0.942
Eg3 P 0.906 0.921
Eg4 P 0.973 0.979
Eg5 P 0.926 0.926
Eg6 P 0.924 0.952
Eg7 N 0.978 0.979
Eg8 N 0.983 0.984
Eg9 N 0.825 0.825
Eg10 N 0.882 0.884

6 Journal of Healthcare Engineering



segmented lesion area, which needs to be screened for false
positives.

Since DenseNet performed excellently in object recog-
nition [32], it has also been proved useful for COVID-19
image classification in previous research [22, 24], so we use
this network to train false positives screening. 3ere may be
multiple lesion areas detected in one slice, so it was necessary
to cut into lesion area blocks according to the mask area and
determine whether each lesion area block was a real lesion.

Due to the limited data, we selected 10 positive scans and
11 negative scans randomly for training.3en, we resized the
lesion area blocks to 64 ∗ 64. Even during the detection of
positive sections, some negative lesions may be included. So,
we needed to filter them out before training. To improve the
generalization of the training model, we used data aug-
mentation for small samples. 3e data augmentation tech-
nique is a widely used method for training models to
increase training benefits and decrease the effect of network
regularization. All the data were augmented by horizontal
and vertical flip, width and height shift, and rotation with
angles of 90°,180°, and 270°, so that the number of training
data expanded about fivefold.

2.2.3. Feature Extraction and Classification. 3e decision
tree method in machine learning was used for final classi-
fication. In the previous steps, we obtained the lesion area in
each CT slice. But it is not reliable to detect one slice to
represent the entire scan. 3erefore, we chose 8 overall
features of the CT scan, the features are shown in Table 2.
3en, we used the decision tree for training classification and
testing.

3e training and testing datasets have 607 scans, except
the 50 scans used in lung segmentation and the other 21
scans used in lesion segmentation, including 415 COVID-19
scans and 192 non-COVID-19 scans. 3e training set and
test set were divided according to a ratio of 6 : 4.

2.2.4. Model Parameters. 3e parameters used in each
model for training are shown in Table 3.

2.3. COVID-19VolumeMeasurement. In CTscan diagnosis,
doctors can analyze the patients’ condition according to the
lesion changes. COVID-19 has different imaging manifes-
tations due to the disease development, and the most in-
tuitive manifestation is the change in lesion volume. By
analyzing all the CTscans of one patient, we could judge the
disease development according to the changes in the lesion
volume.

In this COVID-19 volume measurement experiment,
according to the CT scans during the patient’s treatment,
based on time information of each scan, the lesion volume
was calculated to assist doctors in quantifying the condition
and analyzing the development. In the classification ex-
periment, we have already obtained the lung area and the
lesion area of the patient image for this experiment.

As the lung volume changes with breathing, it is
impossible to simply obtain an accurate volume of the

lung, and the corresponding lesion volume cannot be
accurately measured. To simplify the calculation, do not
perform three-dimensional reconstruction of the image
sequence, using the image sequence directly to convert the
calculation of the three-dimensional lesion volume into
the calculation of the two-dimensional lesion area. Cal-
culating the sum of the pixel area of the lung area and the
lesion area of all slices in each CT scan to obtain the
proportion of the lesion volume and the lung volume, as
shown in formula (9), where AreaLesion is the sum of the
pixel area of the lesion area, AreaLung is the sum of the
pixel area of the lung area. By calculating the ratio, we can
solve the problem that the basic difference of lung volume
between different patients makes it impossible to use the
same quantitative standard to judge.

Per �
Area Lesion
Area Lung

. (9)

3. Results and Discussion

3.1. Classification Result. We tested on the collected dataset
using the abovementioned experimental methods. Due to
data imbalance, we referenced the five-fold cross-validation
method and divided the remaining 607 data into 5 groups,
and each group of data is composed as shown in Table 4.
P_Num is the number of COVID-19 CT scans, N_Num is
the number of non-COVID-19 CTscans, and A_Num is the
number of total CT scans.

Randomly taking three groups of data for training and
the remaining two groups of data for testing, the accuracy,
precision, sensitivity, and F1-score are calculated. A total of
10 datasets were formed for training and testing. 3e results
of the 10 sets of data are shown in Table 5. We use 95% CI
(confidence interval) on the obtained datasets, we get the
average accuracy of 94.4% (95%CI: 91.6%–97.2%), precision
96.7% (95%CI: 94.5%–98.9%), recall 95.2% (95%CI: 92.5%–
97.9%), and F1-score 96.0%.

Partial entry in Table 5 is in the format (µ± σ) where µ is
the average value, and 95%CI is (µ−σ) to (µ+σ).

At the same time, we tested the time used for each part of
the algorithm. Due to the different number of sequence
images, the time used for detection will change accordingly.
In the test, when the average number of slices in the test scan
is 103, the average time of the key part of the algorithm is
shown in Table 6.

According to the abovementioned experimental steps,
the automatic diagnosis system of COVID-19 based on CT
scan was integrated, and we made a software of COVID-19
auxiliary diagnosis based on C++ and Libtorch. 3e time of
the software to detect one CT scan is calculated. In 60 CT
scans, the average number of images is 100, and the average
detection time per scan is 28.78 s.

3.2. Volume Measurement Result. 3e scans of 142 patients
from the hospital were collected in this experiment, and each
patient contains images with varying times of detections.

Journal of Healthcare Engineering 7



Take one patient’s scans as an example. As shown in
Figure 7, it shows that the patient has 12 times of detection
between January and April. 3e abscissa in Figure 7 shows
the detection date of the CT scans. 3e ordinate shows the
proportion of the lung area and the lesion area in the scan.
For the convenience of the display, it was plotted as a

percentage. Doctors could visually see the changes in the
lesion volume according to the data line chart shown in
Figure 7. 3e patient has gone through a period of rapid
development from the onset of COVID-19 and hospitali-
zation and has gradually improved after treatment. In
general, doctors can intuitively judge the disease

Input
Test

Output
Crop mask Crop image

Lesion
segmentation

model of
LinkNet

Figure 6: Test process of lesion segmentation.

Table 2: Features of decision tree.

Feature Definition
Slice_Num 3e number of slices with the lesion area
Lesion_AreaSum 3e total area of lesion area
Lesion_AeraMax 3e largest lesion area
Lesion_MaxPosition 3e position of the slice with the largest lesion in the CT scan
Slice_NumPercent 3e ratio of the number of slices with lesions to the total number of slices
Lesion_MaxPercent 3e ratio of the largest lesion area to the lung area of that slice
Lesion_SumPercent 3e ratio of the sum of lesion area to the sum of lung area in the slice with lesion
Lesion_AllSumPercent 3e ratio of the total area of the lesion to the total area of the lung

Table 3: Parameters of models.

Model Parameter Value

Segmentation model

Batch size 16
Epoch 100

Loss function BCEWithLogitsLoss
Optimizer Adam

Learning rate 10−3

False positive screening model

Batch size 128
Epoch 200

Learning rate 5 ∗10−3

Loss function Cross-entropy loss
Optimizer SGD

Decision tree model
Criterion “Gini”

Class_weight “Balanced”
Splitter “Best”

Table 4: Composition of 5 groups of data.

Set A-Num P-Num N-Num
X1 122 83 39
X2 122 83 39
X3 122 83 39
X4 121 83 38
X5 120 83 37
ALL 607 415 192
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development and treatment effect based on the measure-
ment and analysis of the patients’ CT scans.

4. Conclusions

In conclusion, the rapid and effective diagnosis and disease
development analysis of COVID-19 is important in the
current situation where COVID-19 is still spreading. Nucleic
acid detection has false negative and hysteresis. Also, it
cannot judge the severity of the condition. Lung CT scans
can provide auxiliary diagnosis and monitor the disease
progression. To assist doctors in realizing rapid diagnosis
and rapid interpretation of lung CT scans, this paper pro-
posed an automatic COVID-19 detection method based on
spatiotemporal information fusion. It analyzes the spatial
characteristics of CT scans to assist doctors in COVID-19
diagnosis and fuses time information of the scans to assist
doctors in quantifying the patient’s condition. We achieved

the classification of COVID-19 and non-COVID-19 on the
collected datasets. We use the LinkNet network to train the
lung and lesion segmentation network and the DenseNet
network to train the false positive screening network.
Considering that the relationship of the features between the
CT slices will affect the judgment of classification, we
extracted the sequence features of CT scans instead of the
features of one single slice. 3e decision tree method is used
for classification and by quantifying the lesion volume of the
CT scan and fusing time information, we realized the
computer-aided diagnosis of COVID-19.

Experimental results show the following:

(1) 3e result on the obtained dataset gets an average
accuracy of 94.4%, precision of 96.7%, recall of
95.2%, and F1 score of 96.0%.

(2) Analysis of the CT scans from the patient during his
treatment can intuitively quantify the disease

Table 5: 3e test result of the 10 datasets.

Data Test AUC (95%CI) Pre (95%CI) Rec (95%CI) F1
Dataset1 X4X5 93.8± 3.0 95.2± 2.7 95.9± 2.5 0.955
Dataset2 X3X5 95.0± 2.7 98.1± 1.7 94.6± 2.8 0.963
Dataset3 X3X4 95.5± 2.6 96.4± 2.3 97.0± 2.1 0.967
Dataset4 X2X5 93.0± 3.2 96.9± 2.2 92.8± 3.3 0.948
Dataset5 X2X4 94.7± 2.8 95.8± 2.5 96.4± 2.3 0.961
Dataset6 X2X3 92.6± 3.3 96.8± 5.5 92.2± 3.3 0.944
Dataset7 X1X5 95.0± 2.7 96.4± 2.3 96.4± 2.3 0.964
Dataset8 X1X3 96.3± 2.7 97.6± 2.3 97.0± 2.3 0.973
Dataset9 X1X2 94.7± 2.4 97.5± 1.9 94.6± 2.1 0.960
Dataset10 X1X4 95.1± 2.8 96.4± 2.0 96.4± 2.8 0.964
Avg. 94.6± 2.8 96.7± 2.2 95.3± 2.7 0.960

Table 6: Algorithm time for each part.

Algorithm part Time (s)
Lung segmentation 5.259
Lesion segmentation 4.727
Remove false positives 4.189
Feature extraction 6.961
Decision tree classification 0.082
Total 21.218
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Figure 7: 3e trend of the lesion volume of one patient’s multiple detection.
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development and analyze the disease development
trend.

(3) 3e lung segmentation and lesion segmentation
training methods in this study could be used for
segmentation recognition of other diseases (such as
tumors). 3e lung segmentation network could also
be used for preliminary data processing of diagnosis
of other lung diseases. 3e method could also be
extended to other kinds of medical images.

However, it has to be acknowledged that our classifier
may not be capable of distinguishing non-COVID inter-
stitial pneumonia from COVID interstitial pneumonia,
whose CT lesion phenotypes are similar. How to distinguish
between COVID-19 and other pneumonia makes our fol-
low-up research directions.
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