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Constrained approaches to maximum likelihood estimation in the context of finite mixtures 
of normals have been presented in the literature. A fully data-dependent soft constrained 
method for maximum likelihood estimation of clusterwise linear regression is proposed, 
which extends previous work in equivariant data-driven estimation of finite mixtures of 
normals. The method imposes soft scale bounds based on the homoscedastic variance and 
a cross-validated tuning parameter c. In our simulation studies and real data examples we 
show that the selected c will produce an output model with clusterwise linear regressions 
and clustering as a most-suited-to-the-data solution in between the homoscedastic and the 
heteroscedastic models.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let {(yi, xi)}n = {(y1, x1), . . . , (yn, xn)} be a sample of n independent units, where yi is the outcome variable and xi are 
the J covariates. A clusterwise linear regression model assumes that the density of yi |xi is given by

f (yi|xi;ψ) =
G∑

g=1

pg f g(yi |xi;σ 2
g ,β g) =

G∑
g=1

pg
1√

2πσg
2

exp

[
− (yi − x′

iβ g)
2

2σ 2
g

]
, (1)

where G is the number of clusters, ψ = {(p1, . . . , pG ; β1, . . . , βG ; σ 2
1 , . . . , σ 2

G ) ∈ R
G( J+2) : p1 + · · · + pG = 1, pg ≥ 0, σ 2

g > 0, 
g = 1, . . . , G} is the set of model parameters, and pg , β g , and σ 2

g are respectively the mixing proportions, the vector of J
regression coefficients, and the variance term for the g-th cluster. The model in Equation (1) is also known under the name 
of finite mixture of linear regression models, or switching regression model [21,22,15].

The parameters of finite mixtures of linear regression models are identified if some mild regularity conditions are 
met [10].

The clusterwise linear regression model of Equation (1) can naturally serve as a classification model. Based on the model, 
one computes the posterior membership probabilities for each observation as follows:
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p(g|yi) = pg f g(yi |xi;σ 2
g ,β g)∑G

h=1 ph fh(yi|xi;σ 2
h ,βh)

, (2)

and then classify each observation according, for instance, to fuzzy or crisp classification rules.
The problem of clustering sample points grouped around linear structures has been receiving a lot of attention in the 

statistical literature because of its important applications (see, for instance, [16], and references therein. For the robust 
literature, among the others, see [6,7]).

In order to estimate ψ , one has to maximize the following sample likelihood function

L(ψ;y) =
n∏

i=1

{ G∑
g=1

pg
1√

2πσg
2

exp

[
− (yi − x′

iβ g)
2

2σ 2
g

]}
, (3)

which can be done using iterative procedures like the EM algorithm [5], whose clustering can be interpreted as a fuzzy 
partition [9]. Unfortunately, maximum likelihood (ML) estimation of univariate unconditional or conditional normals suffers 
from the well-known issue of unboundedness of the likelihood function: whenever a sample point coincides with the 
group’s centroid and the relative variance approaches zero, the likelihood function increases without bound ([14]; also the 
multivariate case suffers from the issue of unboundedness. See [4]). Hence a global maximum cannot be found.

Yet, ML estimation does not fail: Kiefer [15] showed that there is a sequence of consistent, asymptotically efficient and 
normally distributed estimators for switching regressions with different group-specific variances (heteroscedastic switching 
regressions). These estimators correspond, with probability approaching one, to local maxima in the interior of the param-
eter space. Nonetheless, although there is a local maximum which is also a consistent root, there is no tool for choosing 
it among the local maxima. Day [4] showed, for multivariate mixtures of normals, that potentially each sample point – or 
any pair of sample points being sufficiently close together, or co-planar [24] – can generate a singularity in the likelihood 
function of a mixture with heteroscedastic components. This gives rise, both in univariate and multivariate contexts, to a 
number of spurious maximizers [18].

The issue of unboundedness can be dealt with by imposing constraints on the component variances. This approach is 
based on the seminal work of Hathaway [8], who showed that imposing a lower bound, say c, to the ratios of the scale 
parameters of univariate mixtures of normals prevents the unboundedness of likelihood function. Although the resulting ML 
estimator is consistent and the method is equivariant under linear affine transformations of the data – that is, if the data 
are linearly transformed, the estimated posterior probabilities do not change and the clustering remains unaltered – the 
proposed constraints are very difficult to apply within iterative procedures like the EM algorithm. Furthermore, the issue of 
how to choose c, which controls the strength of the constraints, remains open.

For multivariate mixtures of normals, Ingrassia [12] showed that it is sufficient, for Hathaway’s constraints to hold, to 
impose bounds on the eigenvalues of the class conditional covariance matrices. This provides a constrained solution that 
1) can be implemented at each iteration of the EM algorithm, and 2) still preserves the monotonicity of the resulting EM 
[13]. Recently, Rocci et al. [23, RGD] proposed a constrained estimation method for multivariate mixtures of normals, being 
characterized by 1) fully data-dependent constraints, 2) equivariance of the clustering algorithm under change of scale in 
the data, and 3) ease of implementation within standard routines [12,13].

The aim of this paper is to extend the RGD constrained estimation method to clusterwise linear regression models. 
We demonstrate that it works very well when a conditional distribution (linear regression) is specified for each mixture 
component.

A correct estimation of the regression coefficients is crucial in a regression context, where the focus is not only on the 
cluster recovery, but on the interpretation of the estimated associations. RGD (2017) looked at how good the method was 
at recovering clusters: in our simulation study we also bring into focus the regression parameters, and look at the quality 
of the estimators in terms of mean squared error – which embeds both the bias and the variance of the estimators. In 
this new perspective, we can now argue, based on the evidence of our simulation studies and empirical examples, that the 
RGD constrained estimation method yields a final model – in terms of clustering and estimated parameters – in between 
the fully constrained model and the unconstrained model. How close to which of the extremes is optimally determined by 
maximizing a suitable objective function.

Starting from Rousseeuw and Leroy [25]’s nomenclature, the equivariance property in linear models is of three types: re-
gression, affine and scale. Regression equivariance holds if, by adding a linear combination of the covariates to the response 
variable through any column vector, the model parameters are shifted by that same vector. If instead an affine transforma-
tion is applied on the covariates, affine equivariance guarantees that the model parameters are transformed accordingly. That 
is, the linear predictor remains the same. The third type of equivariance refers to scale changes in the response variable, in 
that the model parameters are rescaled such that the linear predictor and the error’s standard deviation are both on the 
new response scale. Either equivariance property types hold for the unconstrained clusterwise linear regression. Notice that 
neither affine transformations of the xs nor shifts in the response proportional to the covariates affect the error’s variance: 
therefore regression and affine equivariance still hold for the constrained model. Indeed, scale equivariance is no longer 
guaranteed in the constrained model, as constraints might prevent the error’s variance to adapt to the new scale of the 
response variable.
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Crucially in a clustering context, scale equivariance ensures that the clustering is the same for any (re)scaling of the 

response variable, hence solving the problem of finding the best scale for the response.
The remainder of the paper is organized as follows. In Section 2 we briefly review Hathaway’s constraints and the suffi-

cient condition in Ingrassia [12]. Section 3 is devoted to a description of the proposed methodology and of the estimation 
algorithm, which is evaluated through two simulation studies, presented in Section 4, and four real data examples, in Sec-
tion 5. Section 6 concludes with some final discussion and some ideas for future research.

2. Constrained approaches for ML estimation

In the context of finite mixtures of univariate normals, Hathaway [8] proposed relative constraints on the variances of 
the kind

min
i �= j

σ 2
i

σ 2
j

≥ c with c ∈ (0,1]. (4)

Hathaway’s formulation of the maximum likelihood problem presents a strongly consistent global solution, no singularities, 
and a smaller number of spurious maxima.

Ingrassia [12] formulated a sufficient condition such that Hathaway’s constraints hold, which is implementable directly 
within the EM algorithm, where the covariance matrices are iteratively updated. In a univariate setup, he shows that con-
straints in (4) are satisfied if

a ≤ σ 2
g ≤ b, with g = 1, . . . , G, (5)

where a and b are positive numbers such that a/b ≥ c. Complementing the work of Ingrassia [12], Ingrassia and Rocci [13]
formulated the conditions under which the constrained algorithm preserves the monotonicity of the unconstrained EM: this 
yields a non-decreasing sequence of the likelihood values if the initial guess σ 2(0)

g satisfies the constraint.

3. The proposed methodology

The present Section gives details on the equivariance of the unconstrained ML estimation of the clusterwise linear re-
gression model (Section 3.1). It then shows that equivariance is preserved by the proposed constraints (Section 3.2), which 
restrict the cluster-conditional variances to lie on a neighborhood of a given target variance, say ξ2, the sole condition under 
which the equivariance hold being that the method used to estimate the target is also equivariant. Then we describe the 
constrained EM algorithm, which we use for estimating the model parameters (Section 3.3) and the cross-validation strategy 
used for selecting c (Section 3.4). Finally, we discuss issues related to the choice of ξ2 in Section 3.5.

3.1. Equivariance of the unconstrained model

We wish to deal with a clustering method which is not affected by the way the response variable is expressed – in terms 
of translations or changes in the unit of measurement. To see how this works in the clusterwise linear regression case, note 
that if we let y∗

i = γ yi , where γ is any real number different than zero, we have

f (y∗
i |xi;ψ∗) =

G∑
g=1

pg f g(y∗
i |xi;σ ∗2

g ,β∗
g), (6)

where σ ∗2
g = γ 2σ 2

g , and β∗
g = γβ g . This implies the following relation

f (yi|xi;ψ) = γ f (y∗
i |xi;ψ∗) (7)

showing the equivariance of the clusterwise linear regression model under scale transformations of the response variable. 
The equivariance of the unconstrained (heteroscedastic) model implies the invariance of the classification which would not 
be affected by the scale of the response variable since the posterior probabilities are given by

p(g|yi) = pg f g(yi|xi;σ 2
g ,β g)∑G

h=1 ph fh(yi|xi;σ 2
h ,βh)

= pgγ f g(y∗
i |xi;σ ∗2

g ,β∗
g)∑G

h=1 phγ fh(y∗
i |xi;σ ∗2

h ,β∗
h)

= p(g|y∗
i ). (8)

Being the transformed data likelihood

L∗ = L
(
ψ∗;y∗) =

n∏ G∑
pg f g(y∗

i |xi;σ ∗2
g ,β∗

g), (9)

i=1 g=1

https://freepaper.me/t/323290 خودت ترجمه کن : 



R. Di Mari et al. / International Journal of Approximate Reasoning 91 (2017) 160–178 163
we have that

L = L (ψ;y) = γ nL
(
ψ∗;y∗) = γ nL∗. (10)

Then, the scale equivariance property of the maximum likelihood estimator (MLE) simply follows from ML theory [31]: if 
σ̂ 2

g and β̂ g are the MLE for the model of y on x then σ̂ ∗2
g = γ 2σ̂ 2

g and β̂
∗
g = γ β̂ g are the MLE for the model of y∗ on x. 

Notice that scale equivariance holds also for the homoscedastic model - the equations are the same as above but without 
the subscript g on the variance term.

3.2. Scale equivariant constraints

Starting from the set of constraints of equation (5), let ξ2 be the target variance. The set of constraints for a clusterwise 
linear regression context are formulated as follows

√
c ≤ σ 2

g

ξ2
≤ 1√

c
,

or equivalently

ξ2√c ≤ σ 2
g ≤ ξ2 1√

c
, (11)

where c ∈ (0, 1].
It is easy to show that (11) implies (4) while the converse is not necessarily true, since (11) is more stringent than (4). 

That is

σ 2
g

σ 2
j

= σ 2
g /ξ2

σ 2
j /ξ2

≥
√

c

1/
√

c
= c.

By considering the re-scaled y, i.e. y∗ , we have that

σ 2
g

ξ2
= σ 2

g γ 2

ξ2γ 2
= σ ∗2

g

ξ∗2
. (12)

Equation (12) shows that the constraints (11) are scale equivariant, provided that the method used to select ξ2 is also 
scale equivariant. Note that, together with scale equivariance, regression and affine equivariance hold as well as in the 
unconstrained case, and would still hold also using Ingrassia [12]’s constraints of Equation (5), the reason being that neither 
transformation of the x’s nor shifts in the response proportional to the covariates affect the error’s variance.

Such constraints have the effect of shrinking the component variances to ξ2, and the level of shrinkage is given by 
the value of c: such a formulation makes it possible to reduce the number of tuning constants from two – (a, b) as in 
Ingrassia [12]’s proposal – to one – c. Note that for c = 1, σ̂ 2

g = ξ2, whereas if c → 0, the final solution will approach 
the unconstrained one. Intuitively, the constraints (11) provide with a way to obtain a model in between a too restrictive 
model, the common-variance model, and an ill-conditioned model, the heteroscedastic model. In other terms, high scale 
balance is generally an asset – as it means that there is some unknown transformation of the sample space that transfers 
the component not too far from the common variance setting – but it has to be traded with fit [24].

3.3. A constrained EM algorithm

For the sake of exposition, we will briefly outline the EM algorithm for the heteroscedastic clusterwise linear regression 
model, then describe the constrained EM, adapted from Ingrassia and Rocci [13] – in which it was used for mixtures of 
multivariate normals.

The expectation step (E-step) at the (k + 1)-th iteration produces an update for the quantity

z(k+1)
ig (yi;ψ (k)) = pg f g(yi;β(k)

g ,σ
2(k)
g )∑G

h=1 ph fh(yi;β(k)
g ,σ

2(k)
g )

, (13)

where i = 1, . . . , n and g = 1, . . . , G . Using the computed quantities from step E, the maximization step (M-step) for the 
heteroscedastic model involves the following closed-form updates:

p(k+1)
g = 1

n

n∑
i=1

z(k+1)
ig , (14)

β
(k+1)
g = (

n∑
z(k+1)

ig xix
′
i)

−1
n∑

z(k+1)
ig xiyi, (15)

 

i=1 i=1
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σ
2(k+1)
g =

∑n
i=1 z(k+1)

ig (yi − x′
iβ

(k+1)
g )2

∑n
i=1 z(k+1)

ig

. (16)

Our constrained approach uses the same EM algorithm, in which the component variances are updated by using Equation 
(16) and then by applying the following rule

σ
2(k+1)
cg = min

(
ξ2 1√

c
,max

(
ξ2√c,σ 2(k+1)

g

))
, for g = 1, . . . , G. (17)

The resulting constrained EM is monotone as Equation (17) is a maximum of the likelihood of Equation (3) subject to 
the constraints (11). The same rule has been used, among others, in Ingrassia and Rocci [13], and Won et al. [29]. In Won 
et al. [29] for instance, in a context of maximum likelihood estimation of the covariance matrix under a set of constraints, 
Equation (17) is the optimization step for each eigenvalue of the covariance matrix.

It should be noted that the update in (17) for the constrained algorithm takes ξ2 as an input parameter, which has been 
obtained outside of the constrained EM.

3.4. Adaptive choice of c

The goal is to choose a c, as we have seen above, which delivers the best compromise model between the common-
variance model – too restrictive – and the totally unconstrained model – ill-conditioned. Phillips [20] showed the con-
sistency, asymptotic normality and efficiency of the maximizer of the constrained likelihood function for a fixed c in 
a switching regression context for Hathaway’s constraints. Xu et al. [30], in the same context, extended the result of 
Phillips [20] for c decreasing to zero as the sample size increases. Nevertheless, how to effectively choose c in finite samples 
is an open issue.

Selecting c jointly with the mixture parameters by maximizing the likelihood on the entire sample would trivially yield 
an overfitted scale balance approaching zero (RGD, 2017).

A practical way to select c, solving the issue of overfitting, would be to estimate, for a given c, the model parameters on 
a subset of the data – the training set. Then, select c such that the log-likelihood of the remaining observations – test set – 
is maximized.

Smyth [26,27] advocates the use of the test set log-likelihood for selecting the number of mixture components. The 
rationale is that it can be shown to be an unbiased estimator (within a constant) of the Kullback–Leibler divergence between 
the truth and the model under consideration. As large test sets are hardly available, the cross-validated log-likelihood can 
be used to estimate the test set log-likelihood. In our case – like in Smyth’s case [26] – given the model parameters, the 
cross-validated log-likelihood is a function of c only, and maximizing it with respect to c, given the other model parameters, 
would handle the issue of overfitting as training and test sets are independent [1].

Let us consider K random partitions of the data, where at each partition the data are split into a training set (y, x)S ={
(yi,xi); i ∈ S

}
nS

, and a test set (y, x) S̄ = {
(yi,xi); i ∈ S̄

}
nS̄

, and we indicate the entire data as 
{
(yi,xi); i ∈ N

}
n , where S ∪ S̄ =

N , and nS +nS̄ = n. Let us denote by ψ̂(c, Sk) the constrained ML estimate obtained on the training set at the k-th partition, 
and by � S̄k

[ψ̂(c, Sk)] the log-likelihood evaluated at the test set. The cross-validated log-likelihood is defined as

CV(c) =
K∑

k=1

� S̄k
[ψ̂(c, Sk)], (18)

that is, as the sum of the contributions of all K test sets to the log-likelihood.
The cross-validation strategy can be summarized according to the following steps (see also RGD, 2017).

1. Select a plausible value for c ∈ (0, 1].
2. Obtain a temporary estimate ψ̂ for the model parameters using the entire sample, which is used as starting point for 

the cross-validation procedure.
3. Randomly partition the full data set into a training set and a test set.
4. Estimate the parameters on the training set using the starting point obtained in step 2. Compute the contribution to 

the log-likelihood of the test set.
5. Repeat K times steps 3–4 and sum the contributions of the test sets to the log-likelihood (cross-validated log-

likelihood).
6. Repeat steps 3–5 for different values of c.
7. Select c which maximizes the cross-validated log-likelihood.

As from Equation (10), scale changes in the response variable simply add a constant to the log-likelihood and, with scale 
equivariant constraints, c is left unaltered.
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3.5. How to choose ξ2

Imposing lower (very small) bounds to the component variances and no upper bound, as it is commonly done among 
practitioners, amounts to using our method with a very small c and ξ2 = 1. However, one can possibly obtain more accurate 
estimates by using larger values of c – hence with tighter bounds. Yet, the bounds would be – perhaps unreasonably – still 
centered at 1.

In Subsection 3.2 we have seen that the method used to select ξ2 has to be scale equivariant in order to ensure the scale 
equivariance of the constraints. The most natural scale equivariant candidate for the target is the homoscedastic normal 
variance. The reason is that, for c = 1 and the variance of a homoscedastic mixture of conditional normals as target, the 
method would simply estimate the homoscedastic mixture of conditional normals model. Nonetheless, if another scale 
equivariant method were used to estimate the target, the constrained method, for c = 1, would estimate a model with 
common variance equal to the target value, but all other parameters would be estimated at their – conditional normal – ML 
values.

The (target) homoscedastic normal variance is computed by using a similar EM algorithm as above. In the homoscedastic 
case, the only difference with respect to the heteroscedastic model is in the update for the component variances. Equa-
tion (16) is replaced, in the M-step for the estimation of the model parameters of the homoscedastic clusterwise linear 
regression, by the following update for the variance term

σ 2(k+1) = 1

n

n∑
i=1

G∑
g=1

z(k+1)
ig (yi − x′

iβ
(k+1)
g )2, (19)

where we drop the index g due to the common variance model assumption.
Other choices of target variance can also be considered, provided that the method used to estimate the target from the 

data is itself scale equivariant, hence automatically replaces ξ2 with ξ∗2 if the data are transformed.

4. Numerical studies

4.1. Design

Two simulation studies were conducted in order to evaluate the quality of the parameter estimates of our constrained 
algorithm (ConC). The latter was compared with the unconstrained algorithm with common (homoscedastic) component-
scales (HomN), and the unconstrained algorithm with different (heretoscedastic) component-scales (HetN). The target mea-
sures used for the comparisons were average Mean Squared Errors (MSE) of the regression coefficients (averaged across 
regressors and groups), and MSE of the component variances (averaged across groups). These measures will allow us to 
state the precision of the estimates. We measured how well the algorithms were able to classify sample units within clus-
ters through the adjusted Rand index [11]. Average computation time in seconds is also reported for each method, and the 
CPU time reported for ConC includes cross-validation running time.

In the first simulation study, the data were generated from a clusterwise linear regression with 3 regressors and in-
tercept, with 2 and 3 components and sample sizes of 100 and 200. The class proportions considered were, respectively, 
(0.5, 0.5)′ and (0.2, 0.8)′ , and (0.2, 0.4, 0.4)′ and (0.1, 0.3, 0.6)′ . Regressors have been drawn from 3 independent stan-
dard normals, whereas regression coefficients have been drawn from U(−1.5, 1.5) and intercepts are (4, 9)′ and (4, 9, 16)′
for the 2-component and 3-component models respectively. The component variances have been set equal to (0.5, 0.5)′ , 
(0.2, 0.6)′ , and (0.1, 0.8)′ in the two-component setups, and to (0.5, 0.5, 0.5)′ , (0.2, 0.6, 0.2)′ , and (0.1, 0.8, 0.1)′ in the 
three-component setups. This yielded variance ratios (smallest variance over the biggest) of respectively 0.125 (heteroscedas-
tic components), 0.333 (mildly heteroscedastic components) and 1 (homoscedastic components).

For each of the 24 combinations sample size × class proportions × variance ratios, we generated 250 samples. For each 
sample, each algorithm – HomN, HetN, ConC (our proposal) – is initialized from the same 9 random fuzzy assignments 
and one rational assignment. We obtain random fuzzy partitions by drawing entries for the n × G matrix of the posterior 
probabilities from a U(0, 1) and then normalizing by row. The rational start is obtained by fitting an OLS regression of y on 
X, and then assigning the sample units to the clusters according to the percentile of the fitted residuals distribution. The 
solution selected – out of the 10 starts – is the one delivering the highest likelihood.1

In the second simulation study, we have increased the number of clusters, the number of regressors and the sample 
size, and assessed the method in a reduced set of scenarios, where we varied only the variance ratios – 0.125, 0.333 and 
1 as above. We generated samples of 300 units from a clusterwise linear regression with 7 regressors and intercept, with 
7 components, each respectively with proportions of 0.14, 0.14, 0.14, 0.14, 0.14, 0.14, and 0.16. Regressors were generated 
as above, whereas the component variances are set to (0.2, 0.6, 0.2, 0.6, 0.2, 0.6, 0.2)′ , (0.1, 0.8, 0.1, 0.8, 0.1, 0.8, 0.1)′ , and 
(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)′ .

1 Computer programs are available from the corresponding author upon request.
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Table 1
Mixing proportions (0.5, 0.5), 250 samples, n = 100 and n = 200, scale ratios of 1, 0.333 and 0.125, 10 starts, 3 regressors and intercept. Values averaged 
across samples. Standard deviations in parentheses. Computation time in seconds.

Algorithm Mixing proportions = (0.5,0.5)′

Avg MSE β̂ Avg MSE σ̂ 2 Adj-Rand Time c

n = 100
Variance ratio = 1

HomN 0.0120 (0.0081) 0.0040 (0.0052) 0.9608 (0.0492) 0.0365 (0.0131) –
HetN 0.0121 (0.0081) 0.0071 (0.0073) 0.9565 (0.0539) 0.0392 (0.0154) –
ConC 0.0120 (0.0081) 0.0046 (0.0057) 0.9599 (0.0510) 1.1840 (0.1768) 0.9364 (0.1053)

Variance ratio = 0.333

HomN 0.0099 (0.0071) 0.0299 (0.0044) 0.9564 (0.0512) 0.0330 (0.0101) –
HetN 0.0097 (0.0070) 0.0057 (0.0068) 0.9748 (0.0384) 0.0343 (0.0127) –
ConC 0.0097 (0.0069) 0.0071 (0.0072) 0.9744 (0.0381) 1.1575 (0.1260) 0.4369 (0.1660)

Variance ratio = 0.125

HomN 0.0120 (0.0096) 0.0879 (0.0060) 0.9399 (0.0576) 0.0341 (0.0115) –
HetN 0.0108 (0.0084) 0.0061 (0.0071) 0.9799 (0.0327) 0.0337 (0.0139) –
ConC 0.0109 (0.0085) 0.0068 (0.0089) 0.9791 (0.0345) 1.1379 (0.1103) 0.0968 (0.0731)

n = 200
Variance ratio = 1

HomN 0.0058 (0.0034) 0.0015 (0.0021) 0.9681 (0.0336) 0.0859 (0.0447) –
HetN 0.0058 (0.0035) 0.0030 (0.0028) 0.9665 (0.0349) 0.0971 (0.1353) –
ConC 0.0058 (0.0034) 0.0018 (0.0022) 0.9677 (0.0333) 3.8566 (0.4982) 0.9450 (0.0764)

Variance ratio = 0.333

HomN 0.0047 (0.0032) 0.0281 (0.0018) 0.9618 (0.0388) 0.0923 (0.1911) –
HetN 0.0046 (0.0031) 0.0022 (0.0025) 0.9827 (0.0231) 0.0877 (0.0881) –
ConC 0.0046 (0.0031) 0.0026 (0.0029) 0.9836 (0.0236) 3.8728 (0.2437) 0.3372 (0.1214)

Variance ratio = 0.125

HomN 0.0056 (0.0043) 0.0873 (0.0045) 0.9492 (0.0433) 0.0831 (0.0489) –
HetN 0.0052 (0.0041) 0.0024 (0.0032) 0.9895 (0.0176) 0.0814 (0.0585) –
ConC 0.0052 (0.0040) 0.0025 (0.0032) 0.9895 (0.0173) 3.9150 (0.2414) 0.0678 (0.0269)

Concerning the choice of the number of random partitions K and the size of the training-test set in the cross-validation 
strategy, Smyth [27] argues that K between 20 and 50 is adequate for most applications, whereby any relative size of the 
test set between 0.1 and 0.5, as found by van der Laan et al. [28], works equally well. We choose K = n/2 and a training-set 
size nS = n − n

5 . A similar setting was also used in RGD (2017), where they tested also different settings and found that 
the final results were not sensitive to changes in the number of random partitions or in the relative size of training-test 
set – provided that all components are represented in the training set. The constrained approach was initialized with a 
non-informative value (c = 1/10000), in order to avoid starting off with a degenerate solution.

4.2. Results

Results for the 24 simulation conditions of the first simulation study are summarized in Tables 1, 2, 3 and 4. In the 
two-component condition, with components of equal sizes (Table 1) and n = 100, HomN is the most accurate in the case 
where the variance ratio equals 1. Our constrained estimator delivers statistically equal numbers. With smaller variance 
scales (0.333 and 0.125), HetN takes over, closely followed by ConC, again delivering statistically equal results compared 
to the most accurate of the two unconstrained approaches. Differences among the approaches tend to fade as n = 200. In 
Table 2 (class proportions of 0.2 and 0.8), we observe similar results in the condition with data generated from components 
with equal common scale. ConC, with n = 100, slightly improves over the unconstrained approaches when the variance 
ratio equals 0.333 or 0.125, and does as well as HomN in the variance ratio = 1 case. Again, differences almost vanish for 
n = 200. Overall, we observe from Tables 1 and 2 that, when either of the two unconstrained approaches is optimal, ConC 
keeps up closely. In this respect, also the average selected constant c nicely displays how close to each of the two extremes 
the final constrained result is.

In the three-component scenarios (Tables 3 and 4), results for the unconstrained approaches are somewhat tarnished, 
especially with uneven mixing proportions (0.1, 0.3, 0.6)′ . In the latter case, in which ConC is the most accurate estimator, it 
is from twice up to twenty times more accurate than the second-best approach. Compared to the two-component scenarios, 
also the average selected c tends to be further away from the extremes (particularly with uneven mixing proportions), 
showing that there is actual room for significantly improving the fit of the unconstrained approaches in all considered 
scenarios.
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Table 2
Mixing proportions (0.2, 0.8), 250 samples, n = 100 and n = 200, variance ratios of 1, 0.333 and 0.125, 10 starts, 3 regressors and intercept. Values averaged 
across samples. Standard deviations in parentheses. Computation time in seconds.

Algorithm Mixing proportions = (0.2,0.8)′

Avg MSE β̂ Avg MSE σ̂ 2 Adj-Rand Time c

n = 100
Variance ratio = 1

HomN 0.0280 (0.0247) 0.0042 (0.0058) 0.9723 (0.0394) 0.0407 (0.0148) –
HetN 0.0328 (0.0426) 0.0275 (0.1089) 0.9694 (0.0438) 0.0381 (0.0142) –
ConC 0.0286 (0.0259) 0.0059 (0.0090) 0.9718 (0.0401) 1.1312 (0.1019) 0.9026 (0.2047)

Variance ratio = 0.333

HomN 0.0162 (0.0161) 0.0361 (0.0100) 0.9648 (0.0450) 0.0426 (0.0166) –
HetN 0.0178 (0.0299) 0.0221 (0.1427) 0.9679 (0.0448) 0.0392 (0.0162) –
ConC 0.0149 (0.0130) 0.0125 (0.0134) 0.9688 (0.0445) 1.1575 (0.1181) 0.4365 (0.3202)

Variance ratio = 0.125

HomN 0.0159 (0.0183) 0.1172 (0.0245) 0.9422 (0.0581) 0.0464 (0.0196) –
HetN 0.0160 (0.0365) 0.0345 (0.2240) 0.9596 (0.0534) 0.0418 (0.0167) –
ConC 0.0114 (0.0096) 0.0093 (0.0126) 0.9647 (0.0467) 1.1714 (0.1081) 0.0812 (0.1112)

n = 200
Variance ratio = 1

HomN 0.0113 (0.0081) 0.0015 (0.0021) 0.9842 (0.0230) 0.1028 (0.0425) –
HetN 0.0113 (0.0082) 0.0057 (0.0063) 0.9824 (0.0238) 0.0892 (0.0252) –
ConC 0.0113 (0.0081) 0.0023 (0.0034) 0.9841 (0.0232) 3.8962 (0.2141) 0.9282 (0.1422)

Variance ratio = 0.333

HomN 0.0067 (0.0049) 0.0369 (0.0073) 0.9728 (0.0294) 0.1020 (0.0431) –
HetN 0.0058 (0.0037) 0.0029 (0.0030) 0.9807 (0.0232) 0.0882 (0.0216) –
ConC 0.0059 (0.0037) 0.0033 (0.0038) 0.9813 (0.0232) 3.9141 (0.2447) 0.2300 (0.1272)

Variance ratio = 0.125

HomN 0.0066 (0.0048) 0.1203 (0.0174) 0.9520 (0.0381) 0.1106 (0.0597) –
HetN 0.0046 (0.0030) 0.0023 (0.0024) 0.9746 (0.0290) 0.0936 (0.0221) –
ConC 0.0046 (0.0030) 0.0025 (0.0027) 0.9772 (0.0268) 3.9638 (0.2126) 0.0367 (0.0220)

In the second simulation study, the above results are even more evident. Interestingly however, we observe that, where 
the variance ratio equals 1, although HomN accurately estimates the component common variance, ConC (with an average 
c ≈ 0.83) improves in both MSE of the betas and cluster recovery (Table 5).

5. Four real data applications

The aim is to show, through the four real data applications we present in this section, that the method works well in 
terms of quality of model parameter estimates and classification. Whereas one can compare true with estimated parameter 
values in a simulation study (where the data generating process is known), this is not possible in real data applications, 
where possibly also the number of clusters in the sample is unknown. What we wish to find is a method being able to 
handle a number of groups larger than what is best for the data at hand – which is typical in exploratory stages of the 
analysis – without being unreasonably drawn by the spurious solutions such cases are likely to deliver. If this is a feature 
the method possesses, automatic model selection procedures can be used without any concern.

Having this in mind, we estimated a clusterwise linear regression, using the 3 methods under comparison, on the 
CEO data set (http :/ /lib .stat .cmu .edu /DASL /DataArchive .html), with 2, 3 and 4 components, assessing the plausibility of 
the estimated regression lines. We carried out a similar exercise on the Temperature data set ([17]; available at http :
/ /rcarbonneau .com /ClusterwiseRegressionDatasets /data _USTemperatures .txt), where we analyzed and compared clusterwise 
linear regression models with 2, 3, 4 and 5 components. We compared the three methods also using the Auto-Mpg data 
set (https :/ /archive .ics .uci .edu /ml /machine-learning-databases /auto-mpg /auto-mpg .data), fitting mixtures of 2, 3, 4 and 5 
components.

Finally, we estimated a 3-component clusterwise linear regression model on Fisher’s Iris data, using petal width as 
dependent variable and sepal width as explanatory variable, in order to assess the clusters recovery.

In all applications the estimated groups are ordered from the smallest to the largest in terms of cluster size.
The constrained approach was initialized with a non-informative value (c = 1/10000), in order to avoid starting off with 

a degenerate solution.
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Table 3
Mixing proportions (0.2, 0.4, 0.4), 250 samples, n = 100 and n = 200, variance ratios of 1, 0.333 and 0.125, 10 starts, 3 regressors and intercept. Values 
averaged across samples. Standard deviations in parentheses. Computation time in seconds.

Algorithm Mixing proportions = (0.2,0.4,0.4)′

Avg MSE β̂ Avg MSE σ̂ 2 Adj-Rand Time c

n = 100
Variance ratio = 1

HomN 0.0590 (0.3771) 0.0085 (0.0375) 0.9702 (0.0392) 0.1335 (0.0916) –
HetN 0.0721 (0.3834) 0.0369 (0.1592) 0.9611 (0.0583) 0.1259 (0.0658) –
ConC 0.0269 (0.0228) 0.0062 (0.0069) 0.9704 (0.0382) 1.8136 (0.4145) 0.9030 (0.1627)

Variance ratio = 0.333

HomN 0.0304 (0.1892) 0.0285 (0.0291) 0.9660 (0.0404) 0.1218 (0.0166) –
HetN 0.0460 (0.2339) 0.0396 (0.2107) 0.9675 (0.0496) 0.1101 (0.0162) –
ConC 0.0151 (0.0109) 0.0084 (0.0081) 0.9754 (0.0320) 1.7223 (0.1181) 0.4914 (0.1788)

Variance ratio = 0.125

HomN 0.0458 (0.2827) 0.0850 (0.0402) 0.9473 (0.0532) 0.1311 (0.1279) –
HetN 0.0554 (0.2640) 0.0580 (0.2837) 0.9695 (0.0577) 0.1204 (0.1074) –
ConC 0.0223 (0.1397) 0.0094 (0.0250) 0.9770 (0.0362) 1.8079 (0.4384) 0.1598 (0.0847)

n = 200
Variance ratio = 1

HomN 0.0113 (0.0066) 0.0017 (0.0023) 0.9866 (0.0176) 0.3049 (0.7659) –
HetN 0.0113 (0.0065) 0.0054 (0.0049) 0.9845 (0.0193) 0.2527 (0.1127) –
ConC 0.0112 (0.0065) 0.0024 (0.0031) 0.9864 (0.0176) 5.5820 (0.7345) 0.9312 (0.1090)

Variance ratio = 0.333

HomN 0.0067 (0.0039) 0.0254 (0.0029) 0.9803 (0.0192) 0.2827 (0.5192) –
HetN 0.0349 (0.2976) 0.0238 (0.1886) 0.9816 (0.0409) 0.2430 (0.1245) –
ConC 0.0065 (0.0037) 0.0037 (0.0035) 0.9861 (0.0170) 5.5699 (0.4304) 0.4205 (0.1053)

Variance ratio = 0.125

HomN 0.0067 (0.0045) 0.0813 (0.0086) 0.9639 (0.0284) 0.2707 (0.3522) –
HetN 0.0124 (0.1079) 0.0091 (0.0960) 0.9879 (0.0231) 0.2348 (0.1047) –
ConC 0.0056 (0.0035) 0.0030 (0.0035) 0.9893 (0.0157) 5.5371 (0.4026) 0.1157 (0.0482)

Fig. 1. CEO data. Best solutions out of 50 random starts, G = 2. K = n/5, and test set size = n/10.

5.1. CEO data

This data set has a well-known structure, although a true number of clusters is not available. It contains 59 records for 
some U.S. small-companies’ CEO salaries (dependent variable), and CEO ages (independent variable).

Bagirov et al. [2] fitted a 2-component and a 4-component clusterwise linear regression, whereas Carbonneau et al. [3]
focused on the perhaps most intuitive 2-component setup. We fitted respectively 2-component (Fig. 1), 3-component (Fig. 2), 
and 4-component (Fig. 3) clusterwise linear regressions, and graphically compared the regression lines and crisp classifica-
tions obtained.

The 2-class solution (Fig. 1) would be favored by HomN and ConC in terms of BIC, whereas HetN would select a 4-class 
model (Fig. 3) as the one minimizing the BIC. Results on BIC values are summarized in Table 6.

As shown in Fig. 1, HomN and HetN deliver different solutions in terms of both estimated regression lines and clustering. 
Interestingly, ConC, with a selected c of about 0.3, yields a solution which is in between homoscedasticity and heteroscedas-
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Table 4
Mixing proportions (0.1, 0.3, 0.6), 250 samples, n = 100 and n = 200, variance ratios of 1, 0.333 and 0.125, 10 starts, 3 regressors and intercept. Values 
averaged across samples. Standard deviations in parentheses. Computation time in seconds.

Algorithm Mixing proportions = (0.1,0.3,0.6)′

Avg MSE β̂ Avg MSE σ̂ 2 Adj-Rand Time c

n = 100
Variance ratio = 1

HomN 0.9209 (1.6722) 0.1015 (0.2024) 0.9463 (0.0596) 0.1197 (0.1069) –
HetN 0.6292 (2.0556) 0.1295 (0.2910) 0.9608 (0.0595) 0.1096 (0.0382) –
ConC 0.3024 (0.8933) 0.0473 (0.1371) 0.9698 (0.0656) 2.0553 (0.5606) 0.3545 (0.3927)

Variance ratio = 0.333

HomN 0.7861 (1.6161) 0.1317 (0.2349) 0.9486 (0.0555) 0.1189 (0.0787) –
HetN 0.5338 (1.5861) 0.1812 (0.4002) 0.9597 (0.0608) 0.1090 (0.0388) –
ConC 0.2308 (0.6126) 0.0801 (0.2358) 0.9711 (0.0557) 2.0744 (0.7441) 0.2286 (0.2867)

Variance ratio = 0.125

HomN 0.6558 (1.5973) 0.1878 (0.2516) 0.9387 (0.0550) 0.1188 (0.0860) –
HetN 0.8355 (3.9024) 0.3064 (0.5605) 0.9497 (0.0678) 0.1100 (0.0410) –
ConC 0.2901 (0.8464) 0.1239 (0.3384) 0.9624 (0.0733) 2.0304 (0.6606) 0.1005 (0.1207)

n = 200
Variance ratio = 1

HomN 0.3547 (0.5893) 0.2570 (0.3731) 0.9421 (0.0717) 0.2272 (0.1252) –
HetN 0.1332 (0.5473) 0.0720 (0.2854) 0.9847 (0.0317) 0.3535 (0.1502) –
ConC 0.0300 (0.1176) 0.0092 (0.0698) 0.9920 (0.0122) 7.8230 (3.0895) 0.1859 (0.3218)

Variance ratio = 0.333

HomN 0.3573 (0.7375) 0.2949 (0.4153) 0.9455 (0.0674) 0.2158 (0.1366) –
HetN 0.1369 (0.5990) 0.0850 (0.3425) 0.9864 (0.0313) 0.3165 (0.1536) –
ConC 0.0136 (0.0488) 0.0066 (0.0384) 0.9932 (0.0110) 7.0303 (1.8301) 0.0851 (0.1624)

Variance ratio = 0.125

HomN 0.3359 (0.7195) 0.3448 (0.4307) 0.9397 (0.0635) 0.2524 (0.4298) –
HetN 0.2677 (0.7267) 0.2294 (0.5715) 0.9724 (0.0526) 0.2883 (0.1363) –
ConC 0.0138 (0.0553) 0.0169 (0.1261) 0.9914 (0.0219) 6.7318 (2.1352) 0.0335 (0.0638)

Table 5
250 samples, n = 300, mixing proportions (0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.16), variance ratios of 1, 0.333 and 0.125, 10 starts, 7 regressors and intercept. 
Values averaged across samples. Standard deviations in parentheses. Computation time in seconds.

Algorithm Mixing proportions = (0.14,0.14,0.14,0.14,0.14,0.14,0.16)′

Avg MSE β̂ Avg MSE σ̂ 2 Adj-Rand Time c

Variance ratio = 1

HomN 0.5051 (3.4355) 0.0755 (0.3375) 0.9448 (0.0829) 5.8671 (1.2955) –
HetN 0.2433 (0.8563) 0.2718 (0.7052) 0.9373 (0.0737) 5.3796 (1.1836) –
ConC 0.2270 (2.1530) 0.1029 (0.5218) 0.9557 (0.0621) 61.1625 (6.3034) 0.8353 (0.3083)

Variance ratio = 0.333

HomN 0.1813 (0.5335) 0.0952 (0.2286) 0.9492 (0.0716) 5.8159 (0.9937) –
HetN 0.3043 (1.4071) 0.2427 (0.8051) 0.9557 (0.0768) 5.2950 (0.8622) –
ConC 0.0686 (0.2809) 0.0638 (0.3226) 0.9720 (0.0409) 61.5495 (4.1174) 0.4289 (0.1835)

Variance ratio = 0.125

HomN 0.2475 (1.1008) 0.1604 (0.2646) 0.9451 (0.0757) 5.8086 (1.1235) –
HetN 0.2311 (1.2021) 0.2282 (0.7504) 0.9613 (0.0693) 5.2996 (0.8895) –
ConC 0.0879 (0.2883) 0.0878 (0.3241) 0.9750 (0.0455) 60.8264 (4.1667) 0.1530 (0.0751)

Table 6
CEO data. BIC values for G = 2, G = 3, and G = 4, computed under 
HomN, HetN, and ConC. Best solutions out of 100 random starts.

G = 2 G = 3 G = 4

BICHomN 706.30 712.14 719.41
BICHetN 704.42 707.70 599.52
BICConC 706.86 721.13 740.92
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Fig. 2. CEO data. Best solutions out of 50 random starts, G = 3. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

Fig. 3. CEO data. Best solutions out of 50 random starts, G = 4. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

ticity: this is the case not only in terms of estimated component-scales, as expected, but also in terms of fitted regression 
lines and clustering. In other words, the proposed procedure has the very nice feature of letting the data decide the most 
appropriate model as the most suited-to-the-data compromise between homoscedasticity and heteroscedasticity.

A similar soft solution, in between homoscedasticity and heteroscedasticity, is delivered also with 3 (Fig. 2) and 4 mix-
ture components (Fig. 3). In particular, the ConC’s solution with 3 components is closer to HetN’s than HomN’s (c ≈0.15), 
although we observe some departure, especially in the first (red) component: indeed HetN red group’s regression line 
crosses the 4 units assigned to that component. This would signal the spurious nature of the solution delivered by HetN. On 
the other hand, HomN’s solution, especially for the first component, seems to be driven by the unit with the highest salary.

As we turn to the 4 components case, ConC yields results closer to HomN (c ≈0.9). In the latter case we observe a 
solution for HetN which is very likely to be spurious, as the first component’s regression line (in red) is aligned with two 
data points, and the relative component variance is relatively very small (the scale ratio between first and second component 
is < 10−11). As for the 3-component case, HomN first component’s solution seems to be driven by the unit with the highest 
salary.

It is interesting to note that, for G ≥ 3, also the solutions delivered by ConC seem spurious. The fact that this happens to 
be the case, combined with the evidence from Table 6 – where ConC selects two components – confirms that the proposed 
method can handle a larger than what is best for the data number of groups, but being still able to deliver the seemingly 
correct (2-component) solution.

5.2. Temperature data

This data set concerns average minimum temperatures in 56 US cities in January, including latitude and longitude of 
each city.2 Among the others who already analyzed these data, Peixoto [19] fitted a polynomial regression of temperature on 
latitude and a cubic polynomial in longitude to this data set, whereas Carbonneau and co-authors [3] fitted a 2-component 
clusterwise linear regression of temperature on latitude and longitude. We fitted a clusterwise linear regression model 

2 The time span considered for taking the average is January 1930 – January 1960. For further information on how average minimum temperatures are 
obtained please refer to Peixoto [19].
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Table 7
Temperature data. BIC values for G = 2, G = 3, G = 4, and G = 5, computed 
under HomN, HetN, and ConC. Best solutions out of 100 random starts.

G = 2 G = 3 G = 4 G = 5

BICHomN 257.98 263.33 261.81 247.06
BICHetN 257.44 256.51 251.30 107.42
BICConC 257.52 264.61 262.80 261.12

Fig. 4. Temperature data. Best solutions out of 100 random starts, G = 2. K = n/5, and test set size = n/10.

of temperature on latitude and longitude with respectively 2, 3, 4, and 5 components (all Tables with estimated model 
parameters can be found in the Appendix). For obvious reasons, latitude is more informative than longitude to determine 
the final clustering. This is why we will plot the clustering results focusing on temperatures and latitudes only.

The 2-component solution is the one chosen by minimizing BICConC. We argue that such a solution be the most appropri-
ate one, although BIC computed under both HetN and HomN seems to favor the 5-component model (Table 7). Nonetheless, 
due to the spurious nature of the final solution delivered by HetN, BICHetN should not be trusted. This is seemingly also the 
case for BICHomN, as the related solution is characterized by a too small class proportion for one component compared to 
the others (p1 = 0.0881), and a small common scale (approximately half of that estimated with G = 4).

The 2-class solution seems to be the most suitable in terms of non-overlapping classes and regression parameters’ 
interpretation. In both classes, latitude has a negative effect on temperature, whereas longitude has a negative effect on 
temperature in the first (smaller) class, and a positive effect on the second (bigger) class. In the 3-class and the 4-class 
solutions (see Appendix A.1), the additional classes are mainly obtained from splits of the second (bigger) class: the resulting 
clusters are characterized by a negative sign for the longitude coefficient. In the 5-class solution, also the first (smaller) class 
is split into 2 sub-classes, both having the feature of positive sign for the longitude coefficient. In addition, we observe that 
HetN converged to a spurious solution, which consists in one component having a variance very close to zero. ConC, in all 
scenarios, estimates a model which is in between HetN and HomN: while being closer to HetN with G = 2 and G = 4, it 
gets relatively closer to the common scale with G = 3 and G = 5 (Fig. 4).

5.3. AutoMpg data

The data concern city-cycle fuel consumption in miles per gallon of a sample of 398 vehicles, to be predicted in terms of 
7 covariates: number of cylinders, model year, and origin, which are discrete valued; displacement, horsepower, weight, and 
acceleration, which are instead continuous valued. Although the available data set has six missing values for horsepower, 
given that we have information on the car models with most relevant characteristics, we were able to back out the values 
and include them in the data set.

We fitted clusterwise linear regressions with intercept of miles per gallon on acceleration, cylinders, displacement, horse-
power, model year, weight, and origin, with 2, 3, 4, and 5 components, comparing results for HomN, HetN, and ConC (see 
Appendix A.2). The most preferred solution for ConC is the 2-component mixture, whereas HomN and HetN select respec-
tively 3 and 5 components (Table 8).

Spurious solutions are typically characterized by a small number of points in at least one cluster, which has a relatively 
small variance [18, p. 103]. The HetN solution with G = 5 appears to be spurious, with two relatively small groups – mixing 
proportions of 0.05 and 0.06 – with relatively small cluster variances – 0.02 and 0.05. Hence, also in this case, we cannot 
trust the model selection results of HetN. The 3-component solution selected by HomN has one very small component -
mixing proportion of 0.06 – compared to the other two – 0.32 and 0.61 respectively (see Table A.15 in Appendix A.2). By 
looking at the 2-component solution (Table 9), which is indeed the one selected by minimizing BICConC, we observe that 
the data seem to support a heteroscedastic structure, as ConC and HetN deliver two almost identical solutions. This would 
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Table 8
Auto-Mpg data. BIC values for G = 2, G = 3, G = 4, and G = 5, computed 
under HomN, HetN and ConC. Best solutions out of 100 random starts.

G = 2 G = 3 G = 4 G = 5

BICHomN 1365.89 1363.22 1381.12 1398.56
BICHetN 1329.35 1340.55 1320.86 1319.93
BICConC 1329.74 1340.95 1364.76 1371.26

Table 9
Auto-Mpg data. Covariates are acceleration (x1), cylinders (x2), displacement (x3), horsepower (x4), model year (x5), 
weight (x6), and origin (x7). Best solutions out of 100 random starts, G = 2. K = n/5, and test set size = n/10.

HomN HetN ConC

pg 0.2215 0.7785 0.4473 0.5527 0.4353 0.5647
Intercept −35.0716 −3.2278 −23.3485 3.7071 −23.5883 3.5861
β1g 0.1819 −0.2530 0.1354 −0.4212 0.1383 −0.4177
β2g 1.1272 −0.7172 0.1853 −0.9055 0.1767 −0.8938
β3g 0.0170 0.0004 0.0362 −0.0116 0.0367 −0.0116
β4g −0.2113 −0.0077 −0.1188 −0.0035 −0.1211 −0.0031
β5g 1.1328 0.5862 0.9546 0.4699 0.9592 0.4730
β6g −0.0070 −0.0042 −0.0084 −0.0022 −0.0084 −0.0022
β7g 0.6887 1.7958 0.7283 2.6872 0.7221 2.6430
σ 2

g 2.3770 2.3770 3.1592 1.4190 3.1576 1.4906
c – – – – 0.1547 0.1547

Table 10
Iris data. Adjusted Rand index, CPU time in seconds and selected c for a 
3-component clusterwise linear regression of petal width on sepal width. 
Best solution out of 500 random starts. K = n/5, and test set size = n/10.

Algorithm Adj-Rand Time c

HomN 0.5532 48.5605 –
HetN 0.4414 35.3266 –
ConC 0.8180 495.5422 0.0222

explain the 3-component result of HomN, which adapted to a seemingly non-spherical two-component structure by adding 
an extra component.

By looking at Table 9 we observe that acceleration (x1), cylinders (x2), and displacement (x3) have all positive effect on 
miles per gallon in the first (smaller) component, and negative effect in the second (larger) component. Cars with more 
horsepower, not surprisingly, tend to drive less miles per gallon – although the effect is relatively milder for the second 
(larger) component – whereby a more recent model year (x5), all else equal, is positively associated with miles per gallon 
in both components – again, with a relatively milder effect on the second component.

5.4. Iris data

We consider a subset of the Iris data, available at the link https :/ /archive .ics .uci .edu /ml /index .html. Although this is a 
data set typically used for multivariate analysis, here we use it for illustrative purposes. The data set contains 3 classes of 
50 instances each, where each class refers to a type of iris plant. The clusters recovery obtained by the three methods is 
assessed in terms of Adj-Rand index. We also report computation time and the estimated c.

By looking at the true classification, the two upper groups (blue and green) seem to cluster around two parallel lines, 
whereas in the red group there seem to be no significant relation between Petal width and Sepal width. Only ConC – among 
the ones compared – is able to detect such a structure.

ConC yields a clustering which is the closest to the true classification compared to HomN and HetN (Fig. 5). The Adj-Rand 
obtained by ConC, as we observe from Table 10, is 0.82, whereas HomN and HetN obtain much lower values – 0.55 and 0.44 
respectively. On the other hand, the computation time it takes for ConC to run, multiple starting value strategy included, is 
more than 10 times longer than HetN and HomN.

6. Conclusions

In the present paper, a scale equivariant soft constrained approach to maximum likelihood estimation of clusterwise lin-
ear regression model is formulated. This extends the approach proposed in RGD (2017) for multivariate mixtures of normals 
to the clusterwise linear regression context. Through the extensive simulation studies and the four empirical applications, 
we are able to show that the method does not only solve the issue of unboundedness, but it is also able to improve upon 
the unconstrained approaches it was compared with. Whenever either of the unconstrained approaches is instead optimal, 
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Fig. 5. Iris data. Best solutions out of 500 random starts, G = 3. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

our constrained estimator keeps up closely. In addition, as pointed out by the empirical examples, the BIC based on the con-
strained solution is able to provide sensible choices for the number of clusters whereby the two unconstrained competitors 
cannot.

Whereas RGD (2017) showed that the method has merit in both fuzzy and crisp classification, the additional step 
ahead we take is twofold: 1) we show that the method works well also when conditional distributions (linear regres-
sions) are specified for the mixture components, by looking at cluster recovery and by 2) bringing into focus, in our 
simulation study, bias and variance of the model parameter estimators, which are both entailed in the mean squared er-
ror.

Previous work on constrained estimation of switching regressions [20,30] had shown consistency of the estimator for 
fixed c, and for c approaching zero with sample size going to infinity. We solve the finite sample problem by using a soft 
approach, which imposes imprecise bounds based on a cross-validated choice of c. The selected c will produce an output 
model with clusterwise linear regressions and clustering as a most-suited-to-the-data solution in between the homoscedas-
tic and the heteroscedastic models.

Our method shares common ground with the plain constrained maximum likelihood approach in that parameter updates 
are the same as in a constrained EM [12,13]. Nevertheless, the final solution we obtain maximizes the cross-validated 
log-likelihood, and the constraints are tuned on the data. This eliminates all unreasonable boundary solutions the standard 
constrained algorithm might converge to due to the arbitrary way constraints could be positioned.

The scale equivariance property in a clusterwise linear regression framework is related to linear transformations of the 
dependent variable only. Yet, it is as crucial as in the multivariate mixture of normals case, as it does not uniquely imply 
that the final clustering remains unaltered as one acts affine transformation on the variable of interest. More broadly, no 
matter how the data come in, scale equivariance means that there is no data transformation ensuring better results, since 
the method is unaffected by changes of scale in the response variable.

As it was noticed by Ritter [24], common scale is highly valuable, but it can be a too restrictive assumption for the 
clusters’ scales. In this respect, our approach does not suffer the inappropriateness of the homoscedastic model, as the 
constant c controls how close to (or how far from) it the final model will be. In both the numerical studies and the 
empirical applications, we observed that the method is able to detect departures from homoscedasticity in terms of se-
lected c.

Other targets can be considered, perhaps more specific to the data at hand, provided that the method used to select ξ2

from the data is also scale equivariant – hence replacing ξ2 with ξ∗2 if the data are transformed. Indeed, this can be an 
interesting topic for future work.

The simulation study and the empirical applications have highlighted two related issues linked to the computation 
burden of the proposed method. ConC is indeed computationally intensive compared to the unconstrained approaches it 
was compared with. Building up a computationally more efficient procedure to select the constant c from the data, and 
how to use it for model selection, can be both interesting topics for future research.
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Appendix A. Additional tables and figures

A.1. Tables A.11–A.17 and Figs. A.6–A.8 for the temperature data

Table A.11
Temperature data. Best solutions out of 100 random starts, G = 2. K = n/5, and test set size = n/10.

HomN HetN ConC

pg 0.2371 0.7629 0.2626 0.7374 0.2647 0.7353
Intercept 66.4905 142.2348 74.5325 150.6175 74.8657 150.5268
β1g −1.7204 −2.5182 −1.9829 −2.5806 −1.9945 −2.5791
β2g 0.3353 −0.2249 0.3434 −0.2945 0.3460 −0.2939
σ 2

g 3.5602 3.5602 6.0948 2.7499 5.6950 2.7568
c – – – – 0.1527 0.1527

Table A.12
Temperature data. Best solutions out of 100 random starts, G = 3. K = n/5, and test set size = n/10.

HomN

pg 0.1091 0.1933 0.6975
Intercept 52.0354 96.7770 150.5393
β1g −1.2531 −2.4057 −2.5779
β2g 0.319 0.2735 −0.2940
σ 2

g 2.8466 2.8466 2.8466
c − − −

HetN

pg 0.1841 0.2727 0.5432
Intercept 148.7525 75.1858 155.3267
β1g −2.9327 −1.9155 −2.3968
β2g −0.1350 0.3031 −0.4282
σ 2

g 0.4023 6.7563 1.7041
c – – –

ConC

pg 0.1806 0.2635 0.5559
Intercept 118.0823 63.4605 159.4095
β1g −2.0272 −1.8391 −2.5445
β2g −0.1385 0.4038 −0.4119
σ 2

g 2.1395 3.7875 2.1395
c 0.3191 0.3191 0.3191

Table A.13
Temperature data. Best solutions out of 100 random starts, G = 4. K = n/5, and test set size = n/10.

HomN

pg 0.0856 0.1881 0.2057 0.5206
Intercept 51.8842 117.1396 83.4083 159.6096
β1g −1.1266 −1.9904 −2.1729 −2.5503
β2g 0.2758 −0.1430 0.3186 −0.4123
σ 2

g 1.8003 1.8003 1.8003 1.8003
c – – – –

HetN

pg 0.1459 0.2074 0.2148 0.4319
Intercept 112.1847 62.8423 143.6033 162.6549
β1g −1.7960 −1.6773 −2.8471 −2.5137
β2g −0.1775 0.3498 −0.1177 −0.4610
σ 2

g 0.3626 4.4269 0.3000 1.8447
c – – – –

ConC

pg 0.1922 0.2387 0.2562 0.3129
Intercept 65.9919 179.3683 114.8658 140.3715
β2g −1.6827 −2.7064 −1.9692 −2.7506
β1g 0.3263 −0.5678 −0.1328 −0.1229
σ 2

g 3.5915 1.1907 1.1907 1.1907
c 0.1099 0.1099 0.1099 0.1099
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Table A.14
Temperature data. Best solutions out of 100 random starts, G = 5. K = n/5, and test set size = n/10.

HomN

pg 0.0881 0.1275 0.2117 0.2444 0.3284
Intercept 53.2996 53.1467 179.4572 114.5672 140.4554
β1g −0.8048 -1.1204 −2.7236 −1.9806 −2.7523
β2g 0.0347 0.2640 −0.5639 −0.1257 −0.1224
σ 2

g 0.9200 0.9200 0.9200 0.9200 0.9200
c – – – – –

HetN

pg 0.0536 0.1180 0.1515 0.2168 0.4600
Intercept 130.2868 52.4339 109.4192 143.6856 155.3994
β1g −2.5978 −1.1145 −2.4808 −2.8487 −2.3851
β2g −0.0491 0.2673 0.1908 −0.1179 −0.4358
σ 2

g 10−10 1.1011 3.8704 0.2956 1.7691
c – – – – –

ConC

pg 0.0746 0.1309 0.2403 0.2639 0.2903
Intercept 26.6487 52.9665 174.4789 111.1235 139.2966
β1g −0.6535 −1.1149 −2.7457 −1.7887 −2.7735
β2g 0.2028 0.2635 −0.5017 −0.1729 −0.1010
σ 2

g 0.8116 1.0558 1.1956 0.8939 0.8116
c 0.4608 0.4608 0.4608 0.4608 0.4608

Fig. A.6. Temperature data. Best solutions out of 100 random starts, G = 3. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. A.7. Temperature data. Best solutions out of 100 random starts, G = 4. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)
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Fig. A.8. Temperature data. Best solutions out of 100 random starts, G = 5. K = n/5, and test set size = n/10. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

A.2. Additional tables for Auto-Mpg data

Table A.15
Auto-Mpg data. Covariates are acceleration (x1), cylinders (x2), displacement (x3), horsepower (x4), 
model year (x5), weight (x6), and origin (x7). Best solutions out of 100 random starts, G = 3. K =
n/5, and test set size = n/10.

HomN

pg 0.0632 0.3222 0.6146
Intercept −53.1186 −19.8411 3.0902
β1g −0.4322 −0.1873 −0.3814
β2g 9.6131 −0.9644 −0.8957
β3g −0.1643 0.0551 −0.0100
β4g −0.2817 −0.1284 −0.0006
β5g 1.4806 1.0009 0.4821
β6g −0.0094 −0.0077 −0.0026
β7g −0.4209 0.3868 2.5198
σ 2

g 1.7582 1.7582 1.7582
c – – –

HetN

pg 0.2412 0.3718 0.3871
Intercept 14.4577 −34.1626 4.9302
β1g −0.2244 0.2365 −0.2740
β2g −0.8038 0.3254 −0.8088
β3g 0.0103 0.0343 −0.0246
β4g 0.0049 −0.1122 0.0229
β5g 0.4578 1.0739 0.3715
β6g −0.0067 −0.0089 −0.0015
β7g −0.6552 0.7969 3.5060
σ 2

g 0.8505 3.2226 1.0832
c – – –

ConC

pg 0.2601 0.3695 0.3704
Intercept 13.7311 −33.2343 4.8070
β1g −0.2519 0.2324 −0.2699
β2g −0.8430 0.3259 −0.8162
β3g 0.0093 0.0344 −0.0247
β4g 0.0018 −0.1122 0.0236
β5g 0.4636 1.0642 0.3696
β6g −0.0062 −0.0089 −0.0014
β7g −0.5811 0.7944 3.5566
σ 2

g 0.9572 3.2366 1.0659
c 0.0724 0.0724 0.0724
https://freepaper.me/t/323290 خودت ترجمه کن : 



R. Di Mari et al. / International Journal of Approximate Reasoning 91 (2017) 160–178 177
Table A.16
Auto-Mpg data. Covariates are acceleration (x1), cylinders (x2), displacement (x3), horsepower (x4), 
model year (x5), weight (x6), and origin (x7). Best solutions out of 100 random starts, G = 4. K =
n/5, and test set size = n/10.

HomN

pg 0.0889 0.2079 0.2772 0.4261
Intercept −28.3097 −9.5904 −19.4238 6.6500
β1g −0.4422 0.2457 −0.4974 −0.3867
β2g 2.1330 −0.4710 3.9931 −1.5974
β3g 0.0244 0.0373 −0.0786 −0.0116
β4g −0.2783 −0.0260 −0.0540 0.0036
β5g 1.2226 0.5874 0.8509 0.4364
β6g −0.0082 −0.0065 −0.0055 −0.0014
β7g 2.1787 0.1497 0.4964 2.6528
σ 2

g 1.4745 1.4745 1.4745 1.4745
c – – – –

HetN

pg 0.0359 0.1801 0.3457 0.4383
Intercept 15.0766 20.1896 −36.9270 5.0291
β1g 0.7837 −0.1326 0.1547 −0.3891
β2g −0.8292 −0.8417 1.0346 −0.8139
β3g 0.0983 0.0214 0.0174 −0.0172
β4g 0.0389 0.0096 −0.1523 −0.0015
β5g 0.4991 0.4083 1.0995 0.4125
β6g −0.0205 −0.0085 −0.0071 −0.0015
β7g −0.1739 −0.7710 0.8632 3.4170
σ 2

g 0.0060 0.5670 3.0554 1.1632
c – – – –

ConC

pg 0.1047 0.1464 0.3453 0.4036
Intercept −8.0065 −3.2482 −21.0692 6.9983
β1g 0.6786 −0.8861 0.1542 −0.4218
β2g −0.8268 −0.7765 0.2859 −0.8561
β3g 0.0583 −0.0109 0.0321 −0.0263
β4g −0.0110 −0.0302 −0.1392 0.0163
β5g 0.4805 0.6542 0.9416 0.4316
β6g −0.0084 −0.0011 −0.0082 −0.0020
β7g 1.6221 1.3858 0.7191 2.7470
σ 2

g 0.2506 0.4085 3.1986 1.3927
c 0.0008 0.0008 0.0008 0.0008

Table A.17
Auto-Mpg data. Covariates are acceleration (x1), cylinders (x2), displacement (x3), horsepower (x4), 
model year (x5), weight (x6), and origin (x7). Best solutions out of 100 random starts, G = 5. K =
n/5, and test set size = n/10.

HomN

pg 0.0616 0.1243 0.2082 0.2425 0.3634
Intercept −88.5380 −6.4162 −6.6549 −23.9388 3.0745
β1g −0.8368 −0.2127 0.4036 −0.2718 −0.3781
β2g 4.3099 −2.5067 −0.4849 4.2948 −1.8472
β3g 0.0730 0.1544 0.0373 −0.0922 −0.0083
β4g −0.3422 −0.0080 −0.0191 0.0182 0.0007
β5g 2.0484 1.0615 0.5099 0.8404 0.4694
β6g −0.0114 −0.0222 −0.0067 −0.0068 −0.0009
β7g 2.3141 1.6666 0.6249 0.1703 2.8986
σ 2

g 1.1825 1.1825 1.1825 1.1825 1.1825
c – – – – –

(continued on next page)
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Table A.17 (continued)

HetN

pg 0.0480 0.0589 0.2000 0.2416 0.4516
Intercept −9.4586 −25.5499 19.0180 −42.4670 5.0845
β1g −0.7787 -1.0379 −0.1519 0.4130 −0.3671
β2g 4.6792 -4.0897 −0.7741 2.2460 −0.9636
β3g −0.0755 0.1232 0.0163 −0.0114 −0.0132
β4g −0.0792 −0.2290 0.0086 −0.1404 −0.0033
β5g 0.8535 1.2628 0.4171 1.1048 0.4094
β6g −0.0082 −0.0043 −0.0080 −0.0076 −0.0016
β7g 0.4709 2.4836 −0.7536 0.7408 3.5079
σ 2

g 0.0187 0.0540 0.5931 2.9375 1.2773
c – – – – –

ConC

pg 0.0973 0.1158 0.1677 0.3056 0.3135
Intercept −28.3372 −7.2900 15.7667 9.4782 −33.8232
β1g −0.0430 −0.4034 −0.1149 −0.2713 0.3658
β2g −3.5998 −2.3618 −0.0925 −0.1284 0.4192
β3g 0.1208 0.0105 0.0025 −0.0373 0.0278
β4g −0.1160 −0.0165 0.0032 0.0393 −0.1106
β5g 1.1163 0.5974 0.4200 0.3145 1.0535
β6g −0.0079 −0.0005 −0.0073 −0.0023 −0.0088
β7g −0.4597 2.9456 −0.8094 3.1784 0.6004
σ 2

g 0.2432 0.2432 0.4962 0.8777 3.1862
c 0.0013 0.0013 0.0013 0.0013 0.0013
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