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Abstract

In this paper we discuss the problem of testing equality and inequality constraints in symmetrical
linear regression models. This class of models includes all symmetric continuous distributions, such
as normal, Student-t, Pearson VII, power exponential and logistic, among others. It is commonly used
for the analysis of data containing influential or outlying observations with responses supposedly
normal. Iterative processes for evaluating the parameters under equality and inequality constraints
are presented. The asymptotic null distribution of three asymptotically equivalent one-sided tests is
showed to be invariant with the symmetrical error. A sensitivity study to investigate the robustness
of the maximum likelihood estimates from some symmetrical models against high leverage and
influential observations is presented. An illustrative example with presence of influential observations
on the decisions from the statistical tests of different symmetrical models is given. The robustness
aspects of such models are also discussed.
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1. Introduction

In this paper we discuss two situations of testing restricted hypotheses in symmetrical
linear regressionmodels. First, the problemof testing linear equality hypothesisH0 :C�=d
against the linear inequality hypothesisH2 : C��d, with at least one strict inequality in
H2 (case 1) is treated, and then,H2 : C��d againstRp - H2 (case 2) is discussed. The
problem of testing one-sided alternatives was originally treated byBartholomew (1959a, b)
for independent normal models and extended byKudo (1963)for multivariate normal mod-
els.Nuesch (1966)also investigates this problem in normal models whilePerlman (1969)
extends the results for amore general class of multivariate normal models.Gourieroux et al.
(1982)discuss the asymptotic null distribution of three asymptotically equivalent one-sided
tests in multivariate normal models when the variance-covariance matrix may depend on
a finite number of unknown parameters.Wolak (1987)proposes exact one-sided tests for
multivariate normal models andWolak (1989)extends the results fromGourieroux et al.
(1982)for more general restricted hypotheses. Moving away from the normal case,Kodde
and Palm (1986)andSilvapulle and Silvapulle (1995), for instance, present Wald and score
type tests that may be applied for testing equality and inequality restrictions in general mul-
tivariate regression models. In case 2, the main difficulty is when the information matrix
depends on the parameter�.A consequence of this fact is that we should search through the
set of null parameters for least favorable points.Wolak (1991)proposes a lemma in which
a methodology to find a least favorable region is presented. An excellent review on this
subject may be found in the book byRobertson et al. (1988)(see also,Sen and Silvapulle,
2002).
The paper is organized as follows. In Section 2 we discuss the unrestricted parame-

ter estimation in symmetrical linear models. Iterative processes for evaluating the maxi-
mum likelihood restricted estimates under equality and inequality constraints are given in
Section 3. Section 4 contains the expressions as well as the asymptotic null distribution of
three asymptotically equivalent one-sided tests. In Section 5 a sensitivity study to investi-
gate the robustness of the maximum likelihood estimates from some symmetrical models
against high leverage and influential observations is given. An illustrative example in which
influential observations change the decisions from the statistical tests of different symmet-
rical models is presented in Section 6. The robustness aspects of suchmodels are discussed.
The last section deals with some concluding remarks.

2. Symmetrical linear models

SupposeY1, . . . , Yn independent random variables with density function ofYi given by

fyi (y)=
1√
�
g{(y − �i )

2/�}, (1)

y ∈ R, where the functiong : R→ [0,∞) is such that
∫∞
0 g(u)du<∞. The functiong(·)

is typically known as the density generator. Wewill denoteYi ∼ S(�i ,�). The symmetrical
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linear regression models are defined as

Yi = �i (�)+ �i , (2)

where�i (�)= xTi �, �= (�1, . . . ,�p)
T, xi is ap× 1 vector of explanatory variable values

and�i ∼ S(0,�). We have, when they exist, thatE(Yi)=�i and Var(Yi)=��, where�>0
is a constant that may be obtained from the expected value of the radial variable or from the
derivative of the characteristic function (see, for instance,Fang et al., 1990). For example,
for the Student-t distribution with� degrees of freedom one has�= �/(�− 2) (�>2).
The symmetrical family of distributions allows an extension of the normal distribution

for statistical modeling of real data involving distributions with heavier and lighter tails than
the ones of the normal distribution. Many authors such asMuirhead (1980, 1982), Berkane
and Bentler (1986), Rao (1990)andFang and Anderson (1990)have investigated these
distributions. A review of different areas in which symmetrical distributions are applied is
given byChmielewski (1981). Influence diagnostic methods can be found, for instance, in
Galea et al. (1997)andGalea et al. (2003).
The log-likelihood function for�= (�T,�)T takes the form

L(�)=−n

2
log �+

n∑
i=1

log{g(ui)}.

The functionL(�) is assumed to be regular (Cox andHinkley, 1974, Chapter 9) with respect
to� and�.Regular conditions are also stated inSerfling (1980, p. 144). To obtain the score
function and the Fisher informationmatrix, we need to deriveL(�)with respect to unknown
parameters and then computing some moments of such derivatives. We suppose that such
derivatives exist. However, some symmetric distributions do not satisfy the regularity con-
ditions, for example, double exponential, Kotz and generalized Kotz. These cases will not
be considered here.
We find the score functions

U�(�)= �−1XTD(v)(y− X�) (3)

and

U�(�)= (2�)−1{�−1QV (�)− n}, (4)

wherey= (y1, . . . , yn)
T, X is an× p matrix with rowsxTi , D(v)= diag{v1, . . . , vn} with

vi = −2Wg(ui), Wg(ui) = g′(ui)/g(ui) with g′(ui) = dg(ui)/dui andQV (�) = (y −
X�)TD(v)(y− X�).
Let L̈�� be the(p + 1) × (p + 1) matrix with ij -element�2L(�)/��i�j . After some

algebraic manipulations we find

L̈�� =
[
L̈�� L̈��

L̈�� L̈��

]
,
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Table 1
Values ofg(u),Wg(u) and W′g(u) for some symmetrical distributions

Distribution g(u) Wg(u) W′g(u)

Normal 1√
2�

exp(−u/2) − 1
2 0

Student-t ��/2

Beta(1/2,�/2) (�+ u)
− �+1

2 − �+1
2(�+u)

(�+1)
2(�+u)2

Generalized sr/2

Beta(1/2,r/2) (s + u)
− r+1

2 − (r+1)
2(s+u)

(r+1)
2(s+u)2Student-t

Logistic-I c
exp(−u)
[1+exp(u)]2 − tanh( u2 ) −sech( u2 )/2

Logistic-II exp(−√u)
[1+exp(−√u)]2 − exp(−√u)−1

(−2√u)[1+exp(−√u)]
2 exp(−√u)√u+exp(−2√u)−1
−4u3/2[1+exp(−√u)]2

Generalized 	
Beta(m,m)

[
exp{−	

√
u}

(1+exp{−	
√
u})2

]m −	m[exp(−	
√
u)−1]

(−2√u)[1+exp(−	
√
u)] − 	m

4
2	exp(−	

√
u)
√
u+exp(−2	

√
u)−1

u3/2[1+exp(−	
√
u)]2logistic

Power exponential
exp{− 1

2u
1/(1+k)}


(1+ 1+k
2 )21+(1+k)/2

− 1
2(1+k)(u)k/(k+1)

k

(1+k)22u(2k+1)/(1+k)

Note: 
(·) and Beta(·) are gamma and beta functions respectively andc is a normalized constant,c ≈
1.48430029.

where

L̈��=− �−1XTD(a)X,

L̈��=2�−2XTb and

L̈��=�−2
{n
2
+ uTD(c)u− �−1QV (�)

}

with D(a) = diag{a1, . . . , an}, D(c) = diag{c1, . . . , cn}, b = (b1, . . . , bn)
T, u = (u1, . . . ,

un)
T, ai =−2{Wg(ui)+ 2uiW′g(ui)}, ci =W′g(ui) andbi = {Wg(ui)+ uiW′g(ui)}�i .
The Fisher information matrix for� and� can be expressed, respectively, as

K�� = 4dg
�

XTX and K�� = n

4�2
(4fg − 1),

wheredg =E{W2
g(Z

2)Z2} andfg =E{W2
g(Z

2)Z4} with Z ∼ S(0,1). For some values of
g(u), Wg(u), W′g(u), dg, fg and� for several symmetrical distributions, seeTables 1and2
It may be showed thatK��=0, that is,� and� are orthogonal parameters. A joint iterative
process to solveU�(�)= 0 andU�(�)= 0 is given by

�(r+1) = {XTD(v(r))X}−1XTD(v(r))y (5)
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Table 2
Values ofdg, fg and� for some elliptical distributions

Distribution dg fg �

Normal 1
4

3
4 1

Student-t (�+1)
4(�+3)

3(�+1)
4(�+3)

�
�−2 , �>2

Generalized Student-t r(r+1)
4s(r+3)

3(r+1)
4(r+3)

s
r−2 , s >0, r >2

Logistic-I 0.369310044 1.003445984 0.79569

Logistic-II 1
12 0.60749 �2/3

Generalized logistic 	2m2

4(2m+1)
2m(2+m2�′(m))

4(2m+1) 2�′(m)

Power exponential 
{(3−k)/2}
4(2k−1)(1+k)2
{(k+1)/2}

(k+3)
4(k+1) 2(1+k) 
{3(k+1)/2}


{(k+1)/2}

Note:�′(·) is the trigamma function.

and

�(r+1) = 1

n
QV (�

(r)), (6)

r = 0,1, . . .. The iterative process (6) guarantees positive solution for the maximum like-
lihood estimate of�. We should start the iterative process (5)–(6) with initial values�(0)

and�(0). The procedure described above is the same described byGourieroux andMonfort
(Vol. I, p. 170, 1995). In the first step (5), we maximize the log-likelihood function with
regard to� given�, known as the concentrated log-likelihood,L c(� | �). In the second step
(6), we maximize the log-likelihood function with regard to� given�, namelyL c(� | �).
This procedure leads to the maximum likelihood estimate of�.
Sinceg(·) is a nonincreasing function the concavity ofL c(� | �) is guaranteed by

Theorem 6.6 ofLehmann (1983, p. 53)if the matrix L̈�� = − 1
�X

TD(a)X is negative
definite, that occurs whenai >0, ∀i. For example,ai=1 for the normal case andai= (�+
1)(� − ui)/(� + ui)

2 for the Student-t distribution with� degrees of freedom. Therefore,
we will haveai positive whenever

√
�> |yi − �i |/

√
�, ∀i. Thus, it will be more difficult

to find concavity for small than for large degrees of freedom. This is in agreement with the
results ofPratt (1981). Nevertheless, we may attain concavity even for someai negative.
The concavity ofL c(� | �) is guaranteed when̈L�� is negative.
For the normal distribution the maximum likelihood estimates take closed-form expres-

sions, becausevi = 1,∀i. For the Student-t distribution with � degrees of freedom, we
haveg(u) = c(1+ u/�)−(�+1)/2, �>0 andu>0 so that Wg(ui) = −(� + 1)/2(� + ui)
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andvi = (� + 1)/(� + ui),∀i. In this case the current weightv(r)i from (5) is inversely
proportional to the distance between the observed valueyi and its current predicted value
xTi �(r), so that outlying observations tend to have small weights in the estimation process
(see discussion, for instance, inLange et al., 1989). For the power exponential distribution
with shape parameter�=1/(1+k) fixed,g(u)=ce−0.5u�−1

, u>0 and�� 1
2, thenWg(ui)=

−1
2�u

�−1
i andvi = �u�−1

i .

We further assume that� ∈ 
� ⊂ Rp, where
� is open with interior points. We have

that�̂ is a consistent estimator of�, and

√
n(�̂− �)

d→Np(0, J
−1
�� ), whereJ�� = lim

n→∞
1

n
K��.

Then,K̂−1�� = �̂
4dg

(XTX)−1 is a consistent estimator of the asymptotic variance-covariance

matrix of �̂. Also �̂ is a consistent estimator of�, and

√
n(�̂− �)

d→N(0, J−1��), whereJ�� = lim
n→∞

1

n
K��.

Then,K̂−1�� = 4�̂
2
/n(4fg − 1) is a consistent estimator of the asymptotic variance of�̂.

3. Restricted estimation

3.1. Equality constraints

Suppose first we are interested in estimating the parameter vector� underk linearly
independent restrictionsCT

j � − dj = 0, whereCj , j = 1, . . . , k, arep × 1 vectors and
dj , j = 1, . . . , k, are scalars, both known fixed numbers. The problem here is to maximize
the log-likelihood functionL(�) subject to the linear constraintsC� − d = 0, whereC =
(C1, . . . ,Ck)

T andd = (d1, . . . , dk)
T. Similarly toNyquist (1991), that investigated this

problem in generalized linear models, we will apply the methodology of penalty functions
by considering the quadratic penalty function

P(�, �)= L(�)− 1

2

k∑
j=1

�j (dj − CT
j �)

2.

The procedure consists in finding the solution of maxP�(�, �) for positive and fixed values
of �j , j = 1, . . . , k. The solution for� will be denoted by�(�). The equality restricted
estimate of� is given by

�̂
0 = lim

�1,...,�k→∞
�(�).
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Using similar approach of that given inNyquist (1991)onemay show that̂�
0
is the solution

of the following iterative process:

�0(r+1)={XTD(v(r))X}−1XTD(v(r))y+ {XTD(v(r))X}−1CT

×[C{XTD(v(r))X}−1CT]−1[d− C{XTD(v(r))X}−1XTD(v(r))y], (7)

for r = 0,1, . . ., where�(r) is obtained from (6). The iterative process (7) may be, alterna-
tively, expressed as

�0(r+1)=b(r+1) + {XTD(v(r))X}−1CT[C{XTD(v(r))X}−1CT]−1
×(d− Cb(r+1)), (8)

for r=0,1, . . ., whereb(r+1) denotes�(r+1) evaluated at the current restricted estimate. The
authors have developed a library inS-Plus andR to fit symmetrical linear models based in
some distributions and the iterative process (5–8) andmore, some diagnostic graphics. This
library is available in the web pagehttp://www.de.ufpe.br/∼cysneiros/elliptical/elliptical.
html.
It may be showed under suitable regularity conditions (see, for instance,Gourieroux and

Monford, 1995, Section 10.3) that̂�
0
is a consistent estimator of�, and

√
n(�̂

0 − �)
d→Np(0, (J0��)

−1),

where

J0�� = lim
�1,...,�k→∞

[
lim
n→∞

1

n
E

{
−�P(�, �)

����T

}]

and

E

{
−�P(�, �)

����T

}
= 4dg

�
XTX + CTD(�)C,

with D(�) = diag{�1, . . . , �k}. Then, a consistent estimator of the asymptotic variance–

covariance matrix of̂�
0
is given by

lim
�1,...,�k→∞

{
4dg
�

XTX + CTD(�)C
}−1
= K−1�� {Ip − CT(CK−1��C

T)−1CK−1�� },

which may be evaluated at some consistent estimator of�, such aŝ� and�̂
0
.

Suppose now we have interest in testing the hypothesesH0 : C� = d againstH1 :
C� �= d. The most usual methods for testing these linear hypotheses are the likelihood
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ratio, Wald and score (Rao) tests. The statistics become here, respectively, given by

�∗LR=2{L(�̂, �̂)− L(�̂
0
, �̂0)}

= 2


n

2
log

(
�̂0

�̂

)
+

n∑
i=1

log


 g{(yi − xTi �̂)2/�̂}
g{(yi − xTi �̂

0
)2/�̂0}




 ,

�∗W=(C�̂− d)TV̂ar−1(C�̂)(C�̂− d)

= (C�̂− d)T(CK̂−1��C
T)−1(C�̂− d)

= 4dg

�̂
(C�̂− d)T{C(XTX)−1CT}−1(C�̂− d) and

�∗SR={U�(�̂
0
, �̂0)− U�(�̂, �̂)}TV̂ar0(�̂){U�(�̂

0
, �̂0)− U�(�̂, �̂)}

=U�(�̂
0
, �̂0)

T(K̂ 0
��)
−1U�(�̂

0
, �̂

2
0)

= �̂0

4dg
U�(�̂

0
, �̂0)

T(XTX)−1U�(�̂
0
, �̂0),

whereK̂�� andK̂ 0
�� are evaluated at(�̂, �̂) and(�̂

0
, �̂0), respectively. It follows underH0

and for largen that�∗LR, �
∗
W and�∗SR have a central chi-squared distribution withk degrees

of freedom.

3.2. Inequality constraints

The problem of maximizing log-likelihood functions restricted to linear inequality pa-
rameter constraintsC�−d�0have been investigated by various authors (see, for instance,
Robertson et al., 1988; McDonald and Diamond, 1990; Fahrmeir and Klinger, 1994; Paula
and Sen, 1995). Our primary interest is to obtain the maximum likelihood estimate of�

in model (1) subject to the constraintsC� − d�0; that is, we want to solve the problem
max{C�−d�0}L(�,�). We can apply the Kuhn-Tucker conditions to attain the restricted
global maximum. Consider then the Lagrangian function

L(�,�)= L(�,�)+
k∑

i=1
�j (CT

j �− dj ),

where�= (�1, . . . , �k)T�0 denotes the Lagrange multiplier vector. The sufficient condi-
tions to guarantee that�̃ corresponds to the inequality restricted estimate (see, for instance,
Fahrmeir and Klinger, 1994) are given by

(i) CT
j �̃−dj=0 forj ∈ I ⊆ {1, . . . , k} andCT

j �̃>dj for all j /∈ I ; that is,�̃ is an admissible
point;

(ii) there exist�̃= (�̃1, . . . , �̃k)T�0 such that�L(�,�)/��|
(�̃

T
,�̃)T
= 0; that is,(�̃

T
, �̃)T

is a stationary point;
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(iii) sTL̈��s|
(�̃

T
,�̃)T

<0 for all s �= 0 ands ∈ {s|CT
j s− dj = 0, j ∈ I , �̃j >0 andCT

j s−
dj >0, i /∈ I , �̃j = 0}.

These conditions are equivalent to finding�̃ from a searching procedure which consists in
maximizingL(�,�) subject toCT

j �−dj =0,j ∈ I , for eachI ⊆ {1, . . . , k}. The inequality
restricted estimatẽ� is obtained from the maximization problem that fulfils conditions (i),
(ii) and (iii). Thus, the inequality restricted problem reduces to a equality restricted problem
that may be solved by the procedures given in Section 3.1.
The asymptotic distribution of̃� is not necessarily normal. It depends whether the true

parameter value satisfiesC�−d>0orC�−d=0. For the first case the inequality restricted
estimator coincides asymptotically with the unrestricted estimator and therefore�̃ has the
same asymptotic distribution as�̂. However, if the true value belongs to the boundary of
the set of inequality parameter constraints, the asymptotic distribution of�̃ has the form of
a truncated normal distribution atC�− d= 0 (see discussion, for instance, inGourieroux
and Monford, 1995, Section 21.1).

4. One-sided tests

4.1. Case 1

In this section wewill consider the problem of testing the hypothesesH0 : C�=d against
H2 : C��d, with at least one strict inequality inH2. The usual statistics likelihood ratio,
Wald and score take, in this case, the forms

�LR=2[L(�̃, �̃)− L(�̂
0
, �̂0)]

= 2


n

2
log

(
�̂0

�̃

)
+

n∑
i=1

log


 g{(yi − xTi �̃)2/�̃}
g{(yi − xTi �̂

0
)2/�̂0}




 ,

�W=(C�̃− d)T{CK̃−1��C
T}−1(C�̃− d)

= 4dg

�̃
(C�̃− d)T{C(XTX)−1CT}−1(C�̃− d) and

�SR={U�(�̂
0
, �̂0)− U�(�̃, �̃)}T(K̂ 0

��)
−1{U�(�̂

0
, �̂0)− U�(�̃, �̃)}

= �̂0

4dg
{U�(�̂

0
, �̂0)− U�(�̃, �̃)}T(XTX)−1{U�(�̂

0
, �̂0)− U�(�̃, �̃)},

respectively. In addition, suppose the parameter space of� is open. Under the regular con-
ditions given inGourieroux and Monford (1995, Section 21.3), it follows that the statistics
�LR, �W and�SR are asymptotically equivalent as a mixture of chi-square distributions,
namely

Pr{�LR�c} =
k∑

*=0
�(k, *;�)P r{�2*�c} + o(1), (9)
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wherec�0,�=CK−1��C
T, �20 denotes the degenerate distribution at the origin and�(k, *;

�)’s are knownas level probabilities (seedefinitionandexpressions, for instance, inShapiro,
1985)which are expressed as functions of correlation coefficients associatedwith thematrix
�. These correlation coefficients are the minimum information necessary to compute the
asymptotic null distribution given in (9) because�(k, *;�) depends on� only through
its correlation matrix. Due to the difficulty of computing the level probabilities for five or
more constraints, several approximations have been proposed (see, for instance,Robertson
et al., 1988, Chapter 3). Nevertheless, computational procedures for computingw(k, *;�)
are available (see, for example,Bohrer and Chow, 1978andSun, 1988a, b). If the weights
�(k, *;�)’s do not depend on� through the correlation coefficients associated with the
matrix �, then the distribution given in (9) is unique. Examining the expression ofK��
given in Section 2 we can conclude that� does not depend on� in the class of symmetrical
linear models. This properly does not follow in general. For instance, in generalized linear
models it only occurs in some particular cases (see, for instance,Paula and Sen, 1995).

4.2. Case 2

Now, we will consider the hypothesesH2 : C��d againstRp − H2. In this case, the
usual statistics likelihood ratio, Wald and score take the forms

�cLR=2{L(�̂, �̂)− L(�̃, �̃)}

= 2

[
n

2
log

(
�̃

�̂

)
+

n∑
i=1

log

{
g{(yi − xTi �̂)2/�̂}
g{(yi − xTi �̃)2/�̃}

}]
,

�cW=(C�̂− C�̃)T{CK̂−1��C
T}−1(C�̂− C�̃)

= 4dg

�̂
(C�̂− C�̃)T{C(XTX)−1CT}−1(C�̂− C�̃) and

�cSR=U�(�̃, �̃)
T(K̃��)

−1U�(�̃, �̃)

= �̃
4dg

U�(�̃, �̃)
T(XTX)−1U�(�̃, �̃)

T.

Here we should search for the least favorable distribution sup{C��d}Pr{�cLR�c}. How-
ever, due to the lack of functional dependence of� = CK−1��C

T on � the least favorable

asymptotic null distribution of�cLR, �cW and�cSR for the purpose of testingH2 against
Rp−H2 is attained atC�=d (see, for instance,Wolak, 1991). This distribution is uniquely
determined and given by

Pr{�cLR�c} =
k∑

*=0
�(k, k − *;�)P r{�2*�c} + o(1), (10)

wherec�0. When� depends on� the asymptotic null distribution of�cLR is much more
complicated than (10). A search algorithm should be required in these cases to find the least
favorable situation under the null hypothesis.
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5. Sensitivity study

It is well known that maximum likelihood estimates from symmetrical models with
error distributions presenting heavier tails than the normal ones tend to be less sensitive
to outlying observations. However, few has been investigated on the robustness of such
estimates against influential or high leverage observations in these cases. In order to clarify
this point for some symmetrical models we will present in the sequel a small sensitivity
study in which a particular observation is perturbed in the sense of becoming high leverage
in the simple linear regressionyi =�0+�1xi + �i , where�i ∼ S(0,�). Then, the behavior
of an appropriate influence measure is studied.
For some particular settings for�0,�1 and� and n = 50, xi was obtained from an

exponential distributionofmean1.Weconsider for illustration�i followingnormal,Student-
t with 12and3degrees of freedom, power exponential withk=0.3andk=0.6and logistic-II
distributions. For the power exponential distribution withk >0 the kurtosis coefficient�2
is positive and increases ask increases. For the logistic-II distribution one has�2 = 1.2
while for normal error�2 = 0. After generating the explanatory variablexi we made a
perturbation scheme in the largest explanatory variable value,xmax, in order tomake it a high
leverage point, namelyxmax← xmax+��x for � ∈ [0,3]. Then, we calculated the measure
W(�) = {�1 − �̂1(�)}2/Var{�̂1(�)}, where�1 denotes the true value,�̂1(�) denotes the
estimate of�1 under the perturbation� andVar{�̂1(�)} is the approximate variance of�̂1(�).
Although W(�) assumes a similar form of the Wald statistic we are indeed assessing the
distance between�1 and�̂1(�) under the metric 1/Var{�̂1(�)}. In order to confirm the high
leverage ofxmax under�= 3, we calculate the principal diagonal elements of the leverage
matrixH=(�ŷ/�yT). FromWei et al. (1998)we find thatH=X{XTD(a)X}−1XTD(a). The
index plot ofĥii = âixTi {XTD(â)X}−1xi for �=3 is presented inFig. 1and the behavior of
W(�) is described inFig. 2for the particular setting of�0=1,�1=2 and�=2. As we can
see from this last figure the maximum likelihood estimates of�̂1 from the logistic II, power
exponential withk = 0.6 andk = 0.3 and Student-t with 3 and 12 degrees of freedom,
respectively, seem to be more robust against the perturbation scheme and consequently
against high leverage points. Similar tendencies were observed for other configurations of
�0, �1 and�.

6. Example

In this section we will reanalyze the example discussed byRamanathan (1993)on a
study in which seven variables were observed in 40 metropolitan areas (see Table 10.1
Ramanathan, 1993). The main interest is on regressing the number (in thousands) of sub-
scribers with cable TV(Y ) against the number (in thousands) of homes in the area(X1), the
per capita income for each television market with cable(X2), the installation fee(X3), the
monthly service charge(X4), the number of television signals carried by each cable system
(X5) and the number of television signals received with good quality without cable(X6).
BecauseY corresponds to count data we will use a square root transformation in order to



700 Francisco José A. Cysneiros, G.A. Paula / Computational Statistics & Data Analysis 49 (2005) 689–708

(a) (b) (c)index
0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

index
hh

0 10 20 30 40 50

0.0

0.2

0.4

0.6

index

h

0 10 20 30 40 50

0.0

0.10

0.20

0.30

index

h

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

index

h

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

index
h

0 10 20 30 40 50
(d) (e) (f)

Fig. 1. Index plot ofĥii for the parameter estimates of the symmetrical perturbed models(�= 3) under errors (a)
normal, (b) Student-t with 3 d.f., (c) Student-t with 6 d.f., (d) PE(0.3), (e) PE(0.6) and (f) Logistic-II.
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Table 3
Unrestricted maximum likelihood estimates (standard errors in parenthesis)

Parameter Normal t6 PE(0.3) Logistic− II

�0 2.319 3.335 2.635 3.122
(2.233) (1.866) (1.939) (1.907)

�1 0.034 0.035 0.034 0.034
(0.002) (0.002) (0.002) (0.002)

�2 0.0002 0.0001 0.0002 0.0001
(0.0003) (0.0002) (0.0002) (0.0002)

�3 0.035 0.010 0.023 0.014
(0.040) (0.033) (0.034) (0.034)

�4 −0.245 −0.318 −0.268 −0.301
(0.182) (0.152) (0.158) (0.155)

�5 0.134 0.118 0.122 0.119
(0.059) (0.049) (0.052) (0.051)

�6 −0.361 −0.319 −0.335 −0.327
(0.134) (0.111) (0.116) (0.114)

� 1.015 0.665 0.573 0.298
(0.227) (0.182) (0.146) (0.078)

try to stabilize the variance. Then, we propose the model

√
yi = �0 +

6∑
j=1

�j xij + �i , i = 1, . . . ,40, (11)

where�i ∼ S(0,�) are mutually independent errors. In addition, it is reasonable to expect
in this example that the effect of each coefficient is unidirectional, although the opposite
direction is not theoretically impossible. For instance, one may have interest in assessing
if the number of subscribers decreases as the monthly service charge increases, that is, to
assessH0 : �4=0 againstH2 : �4<0. Following the same idea for the remaining variables
one may have interest in assessing the directions�1�0,�2�0,�3�0,�5�0 and�6�0.

6.1. Analysis under normal error

We first fitted the model (11) by assuming normal errors. The unrestricted estimates
are given in the first column ofTable 3. Applying one-sidedt tests we do not reject the
hypotheses of each coefficient�2, �3 and�4 be equal to zero, at the significance level of
5%, while some doubt appears for the coefficient�5 for which thep-value is about 3%. The
remaining coefficients�1 and�6 are highly significant in the one-sided directions. The only
estimated coefficient with opposite sign is�̂3, but it is not due to multicollinearity that is
negligible in this example. Thus, in order to assess if at least oneof the coefficients�2,�3,�4
and�5 is in the one-sided direction, we apply the statistical tests defined in Section 4.1 to
assess, the hypothesesH0 : C�= 0 againstH2 : C��0, with at least one strict inequality
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Table 4
Statistical test values and thep-values (in parenthesis)

Statistics Normal t6 PE(0.3) Logistic− II

�∗SR 6.61 8.54 9.11 8.50
(0.16) (0.07) (0.06) (0.07)

�∗LR 7.23 8.65 8.33 8.32
(0.12) (0.07) (0.08) (0.08)

�∗W 7.92 8.87 7.7 8.21
(0.09) (0.06) (0.10) (0.08)

�SR 5.87 8.39 8.66 8.26
(0.06) (0.02) (0.02) (0.02)

�LR 6.33 8.56 7.94 8.14
(0.05) (0.02) (0.02) (0.02)

�W 6.85 8.90 7.54 8.14
(0.04) (0.01) (0.03) (0.02)

in H2, where

C=


0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0


 .

The results from the statistical tests (p-values in parenthesis) are available in the first column
of Table 4. It may be showed that the asymptotic null distribution of the statistics�LR,
�SR and�W is a mixture of chi-squared distributions with weights�(0,4;�) = 0.0714,
�(1,4;�)= 0.2610,�(2,4;�)= 0.3728,�(3,4;�)= 0.2389 and�(4,4;�)= 0.0556.
The results indicate that the null hypothesis is not in general rejected, at the level of 10%
for the two-sided tests and at the level of 5% for the one-sided tests.
However, due to the lack of robustness of the least-squared estimates against outlying

observations we performed some residual analysis.Fig. 3a presents the plot ofrsi = (yi −
ŷi )/

√
�̂�, i=1, . . . , n, against the fitted values. The graphic does not give indication of any

systematic tendency suggesting that
√
Y should stabilize the variance of the errors. Never-

theless, area 14 appears with a large residual value (greater than 3) indicating the possible
influence of this observation on the decisions from the statistical tests. The generated enve-
lope, as proposed byAtkinson (1981), is presented inFig. 4a noticing that the assumption
of normal distribution for the errors does not seem to be inappropriate, even though area
14 appears outside the envelope. Elimination of this area reduces drastically thep-values
of the statistical tests as we can see from the first column ofTable 5. Indeed, area 14 has a
high installation fee and a relatively highmonthly service charge which are in disagreement
with the high proportion of homes with cable TV. The index plot of the local total influence
Ci (see, for instance,Lesaffre and Verbeke, 1998; Galea et al., 2003) is given inFig. 5a for
the normal case. As we can see from this figure areas 14 and 1 appear as themost influential
observations. Elimination of area 1 makes all the statistical tests non-significant (see the
first column ofTable 6). This area has a small number of homes with cable TV but a large
number of television signals received with cable.
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Fig. 3. Plots ofrsi against the fitted values for the symmetrical model (11) under errors (a) normal, (b) Student-t

with 6 d.f., (c) PE(0.3) and (d) Logistic-II.

Table 5
Statistical test values and thep-values (in parenthesis) dropping area 14

Statistics Normal t6 PE(0.3) Logistic− II

�∗SR 10.90 11.14 11.73 11.38
(0.03) (0.02) (0.02) (0.02)

�∗LR 12.79 11.42 12.42 11.67
(0.01) (0.02) (0.01) (0.02)

�∗W 15.13 11.86 13.97 12.21
(0.00) (0.02) (0.01) (0.01)

�SR 10.90 11.14 11.73 11.38
(0.01) (0.00) (0.00) (0.00)

�LR 12.79 11.42 12.42 11.67
(0.00) (0.00) (0.00) (0.00)

�W 15.13 11.86 13.97 12.21
(0.00) (0.00) (0.00) (0.00)
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Fig. 4. Normal probability plots for the residualrsi for the symmetrical model (11) under errors (a) normal, (b)
Student-t with 6 d.f., (c) PE(0.3) and (d) Logistic-II.

6.2. Analysis under other symmetrical errors

In order to accommodate areas 1 and 14 or at least to reduce their influence on the results
from the statistical tests we refitted model (11) by assuming distributions for the errors with
heavier tails than the ones of the normal distribution. First, we fitted a model with errors
following a Student-t distribution with� degrees of freedom. If we assume�>4, then a
consistent estimate for� can be obtained from the residualsri = yi − ŷi , i = 1, . . . , n. This
estimate is givenbŷ�=(4m̂2,1−6)/(4m̂2,1−3),wherem̂2,1=(1/n∑n

i=1r4i )/(1/n
∑n

i=1r2i )
2

(Arellano-Valle, 1994). For thedata set of the example abovewefind�̂ ≈ 6.Theunrestricted
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Table 6
Statistical test values and thep-values (in parenthesis) dropping area 1.

Statistics Normal t6 PE(0.3) Logistic− II

�∗SR 3.10 6.39 5.52 5.89
(0.54) (0.17) (0.24) (0.21)

�∗LR 3.23 6.40 5.02 5.66
(0.52) (0.17) (0.28) (0.22)

�∗W 3.36 6.78 4.39 5.56
(0.50) (0.15) (0.35) (0.23)

�SR 2.84 6.39 5.48 5.89
(0.24) (0.05) (0.07) (0.06)

�LR 2.95 6.40 5.00 5.66
(0.23) (0.05) (0.09) (0.07)

�W 3.06 6.80 4.45 5.56
(0.22) (0.04) (0.12) (0.07)
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maximum likelihood estimates for the parameters under theStudent-t distributionwith�=6
degrees of freedom for the errors are given in the second column ofTable 3. The values
of the statistical tests for both two-sided and one-sided tests, as described in the second
column ofTable 4, indicate for the rejection of the null hypothesis at the significance levels
of 10% and 5%, respectively. The residual analyses under thet model are described in
Figs. 3b and4b, indicating that area 14 which appears with a large residual as in the normal
case is here accommodated into the envelope. The generated envelope for the Student-
t model does not present any unusual feature. If we eliminate area 14 the values of the
statistical tests, as described in the second column ofTable 5, do not change as in the normal
case confirming the robustness of the Student-t distribution against outlying observations.
Fig. 5b presents the index plot ofCi for the Student-t model and as we can observe from
this figure areas 1 and 21 appear with large influence. Elimination of area 1 (seeTable 6)
changes the decision based on the two-sided tests but does not change much thep-values
from the one-sided tests.
Two other error distributions with heavier tails than the normal were also assumed, power

exponential withk=0.3 and logistic-II models.We take arbitrarilyk=0.3 in order to try ac-
commodating the outlying observation 14. The unrestricted maximum likelihood estimates
for the parameters of the power exponential and logistic-II models are, respectively, given
in the third and fourth columns ofTable 3. The values of the statistical tests are presented
in the third and fourth columns ofTable 4. We can notice a similarity among the results
for these two models and the Student-t model with� = 6 degrees of freedom. Looking at
Figs. 3c, 3d, 4c and4d we can observe that area 14 also appears as an outlying observation
under these two models, but the generated envelopes have similar behaviors to the one of
the Student-t model. The index plot of Ci given inFigs. 5c and5d confirm the influence of
areas 1 and 14. Elimination of area 1 changes more thep-values from the statistical tests for
the power exponential model, in the sense of non rejecting the null hypothesis, than under
the Student-t and logistic-II models.
Our main conclusion for this example is that the transformation

√
Y seems to stabilize

the variance of the response, but the Student-t , power exponential and logistic-II models
are less influenced by the outlying observation 14. The one-sided tests based on these three
fitted models indicate for the rejection of the null hypothesis at the significance level of
5% while under the normal model the rejection becomes more evident after dropping the
outlying observation 14. However, the Student-t model seems to be more robust against the
influential observation 1 than the other three models. If we continue the selection process
with this model only the coefficients�2 and�3 are removed from the model. Thus, the final
model becomes given by

√
yi = �i + �i , where�i ∼ t6(�i ,�) with �i = �0 + �1xi1 +

�4xi4 + �5xi5 + �6xi6 and�̂0 = 4.727(0.993), �̂1 = 0.035(0.002), �̂4 = −0.293(0.147),
�̂5= 0.111(0.049), �̂6=−0.263(0.092) and�̂= 0.672(0.184).

7. Concluding remarks

In this paper we develop iterative processes relatively simple to be implemented for
evaluating restricted maximum likelihood estimates for the parameters in symmetrical lin-
ear regression models. We have developed codes inS-Plus andR to fit restricted and
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unrestricted symmetrical linear regression models, which are available in the web page
http://www.de.ufpe.br/∼cysneiros/elliptical/elliptical.html. We also verified, under some
regularity conditions, that the asymptotic null distribution of the one-sided statistical tests
is a mixture of chi-square distributions. The asymptotic null distribution is unique for the
cases 1 and 2.
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