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Abstract

In this paper we discuss the problem of testing equality and inequality constraints in symmetrical
linear regression models. This class of models includes all symmetric continuous distributions, such
as normal, Studertt-Pearson VII, power exponential and logistic, among others. It is commonly used
for the analysis of data containing influential or outlying observations with responses supposedly
normal. Iterative processes for evaluating the parameters under equality and inequality constraints
are presented. The asymptotic null distribution of three asymptotically equivalent one-sided tests is
showed to be invariant with the symmetrical error. A sensitivity study to investigate the robustness
of the maximum likelihood estimates from some symmetrical models against high leverage and
influential observations is presented. An illustrative example with presence of influential observations
on the decisions from the statistical tests of different symmetrical models is given. The robustness
aspects of such models are also discussed.
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1. Introduction

In this paper we discuss two situations of testing restricted hypotheses in symmetrical
linear regression models. First, the problem of testing linear equality hypottiesiSf=d
against the linear inequality hypothegis : Cp>d, with at least one strict inequality in
Hy (case 1) is treated, and theH, : Cf>d againstR?” - H, (case 2) is discussed. The
problem of testing one-sided alternatives was originally treate8etholomew (1959a, b)
for independent normal models and extende&bgio (1963)for multivariate normal mod-
els.Nuesch (1966also investigates this problem in normal models wRigzIman (1969)
extends the results for a more general class of multivariate normal m@aelgeroux et al.
(1982)discuss the asymptotic null distribution of three asymptotically equivalent one-sided
tests in multivariate normal models when the variance-covariance matrix may depend on
a finite number of unknown paramete¥¥olak (1987)proposes exact one-sided tests for
multivariate normal models andlolak (1989)extends the results froBourieroux et al.
(1982)for more general restricted hypotheses. Moving away from the normall¢éadde
and Palm (1986ndSilvapulle and Silvapulle (19950or instance, present Wald and score
type tests that may be applied for testing equality and inequality restrictions in general mul-
tivariate regression models. In case 2, the main difficulty is when the information matrix
depends on the paramefeiA consequence of this fact is that we should search through the
set of null parameters for least favorable poiftalak (1991 )proposes a lemma in which
a methodology to find a least favorable region is presented. An excellent review on this
subject may be found in the book Robertson et al. (198&¥ee alsoSen and Silvapulle,
2002.

The paper is organized as follows. In Section 2 we discuss the unrestricted parame-
ter estimation in symmetrical linear models. Iterative processes for evaluating the maxi-
mum likelihood restricted estimates under equality and inequality constraints are given in
Section 3. Section 4 contains the expressions as well as the asymptotic null distribution of
three asymptotically equivalent one-sided tests. In Se&ia sensitivity study to investi-
gate the robustness of the maximum likelihood estimates from some symmetrical models
against high leverage and influential observations is given. An illustrative example in which
influential observations change the decisions from the statistical tests of different symmet-
rical models is presented in Section 6. The robustness aspects of such models are discussed.
The last section deals with some concluding remarks.

2. Symmetrical linear models
Supposé, ..., Y, independent random variables with density functioty,ofiven by
1

Vé

y € R, where the functiog : R — [0, co) is such tha}fgo g(u) du < oco. The functiong(-)
is typically known as the density generator. We will denigte- S(y;, ¢). The symmetrical

Fu ) = —=gl(y — 1)%/ ¢}, 1)
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linear regression models are defined as

Yi=pw(P) + ¢, 2)

wherey; () = xiT,B, p=q, ..., ,Bp)T, X; isap x 1 vector of explanatory variable values
ande; ~ S(0, ¢). We have, when they exist, thB(Y;) = y; and Var¥;) = ¢, where > 0

is a constant that may be obtained from the expected value of the radial variable or from the
derivative of the characteristic function (see, for instaf@ag et al., 1990 For example,

for the Student-distribution withv degrees of freedom one has=v/(v — 2) (v> 2).

The symmetrical family of distributions allows an extension of the normal distribution
for statistical modeling of real data involving distributions with heavier and lighter tails than
the ones of the normal distribution. Many authors sucMashead (1980, 1982Berkane
and Bentler (1986)Rao (1990)and Fang and Anderson (199Bave investigated these
distributions. A review of different areas in which symmetrical distributions are applied is
given byChmielewski (1981)Influence diagnostic methods can be found, for instance, in
Galea et al. (1997andGalea et al. (2003)

The log-likelihood function fol = ([fT, $)T takes the form

L) =3 log ¢ + ) log{g(ui)).
i=1

The functionL (0) is assumed to be reguld@@x and Hinkley, 1974Chapter 9) with respect
to f and¢. Regular conditions are also statederfling (1980, p. 144)To obtain the score
function and the Fisher information matrix, we need to defig®) with respect to unknown
parameters and then computing some moments of such derivatives. We suppose that such
derivatives exist. However, some symmetric distributions do not satisfy the regularity con-
ditions, for example, double exponential, Kotz and generalized Kotz. These cases will not
be considered here.

We find the score functions

Up(0) = ¢~ XTDW)(y — XB) (3)
and

Up(0) = 29) "M~ Qv (B) —n), @
wherey = (y1, ..., y,,)T, Xisan x p matrix with rowsxl.T, D(v) =diag{vs, .. ., v,} with

vi = —2Wo (u;), W (u;) = g'(u;)/g(u;) with g'(u;) = dg(u;)/du; and Qv (B) = (y —
XB)DW)(y — Xp).

Let Egg be the(p + 1) x (p + 1) matrix with ij-elementé‘zL(())/éﬁiﬁj. After some
algebraic manipulations we find

. Lps L
L%Z[Eﬁﬁ I:/fqb]
o8 Lo
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Table 1
Values ofg (u), W, (1) and V\/g(u) for some symmetrical distributions

Distribution g(u) W, (1) Wi, ()
1 _ _1
Normal Ner exp(—u/2) 5 0
/2 -t 41 04D
Studentr szt 2 —ahwn 20tu?
, 5/2 e ) (r+1)
Gesntﬁg’gﬁgd Bem1/Zr72) ¢ T 1) 26+ 2ot
istic- _expmw) _ _ u _ u
Logistic-| Mt expt) 2 tanh(3) sech(5)/2
Logistic-Il exp(—+/u) _ exp(—/u)—1 2 exp—u)Jutexp(—2,/u)—1
[1+exp(—y/u)12 (—=2Vu)[1+exp(—/u)] —4u3/2[1+exp(—/u)]?
Generalized x oxp—ai) " —omlexp—a/i -1l sun 22 €Xp—/i)/ii-+eXp(~2/i)—1
logistic Betam.m) | (1+exp{—a/u})? | (—2/wll+exp(—ay/u)] 4 u3/2[1+exp(—a/u) 12

expl— %ul/(1+k) }

Power exponenti - 1 k
P (1 +LJ£/€)21+(l+k)/2 2(14k) (u)k/&+D) (14k)22u Pk+1D)/(A1+k)

Note: I'(-) and Bet&) are gamma and beta functions respectively arid a normalized constant, ~
1.48430029.

where

Lpp=— ¢ X" D@X,
Eﬂ¢=2(f)_2XTb and

Lop=02{5 +u'Diu—¢ "0v ()]

with D(a) = diag{as, . . ., a,}, D(c) = diag(c1, ..., cx}, b= (b1, ..., b)), U= (uy, ...,
un) ', ai = —2(W, (1) + 2u; Wy, (i)}, ¢; = W} (u) andb; = (W (u;) + ui Wiy (1)}
The Fisher information matrix fof and¢ can be expressed, respectively, as

4d
K gp = ?ngx and Kgp= %&(4& — 1),

whered, = E{W3(2?)Z%} and f, = E{W3(Z%)Z*} with Z ~ S(0, 1). For some values of
), W, (), W;, (u), dg, f, and¢ for several symmetrical distributions, st&bles land2

It may be showed tha s =0, that is, and¢ are orthogonal parameters. A joint iterative
process to solvelg(0) = 0andU,(0) = 0 is given by

ﬁ(r+l) _ {XTD(V(I’))X}—leD(V(V))y (5)
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Table 2
Values ofdy, f, and¢ for some elliptical distributions

Distribution dg fe 14
Normal 711 % 1
(+1) 30v+1) , '
Studentt m 4(:,+3) 5, V>2
Generalized Student- ‘{Y((rrtlg) igig S 5>0,r>2
Logistic-I 0.369310044 1.003445984 0.79569
Logistic-1I & 0.60749 72/3
: ot 2m? 2m(2+m2y' (m)) /
Generalized logistic 2o TD oD 20" (m)
: r{3-k)/2 (k+3) (1+k) T{3(k+1)/2}
Power exponential A D102 (k112 4Gk+1) 2 r{(k+1)/2}
Note:y/(-) is the trigamma function.
and
1
+1
P =~0v(p"), (6)

r=20,1,.... The iterative process (6) guarantees positive solution for the maximum like-
lihood estimate ofp. We should start the iterative process (5)—(6) with initial valﬂ@é
anqu(O). The procedure described above is the same describ&dbrieroux and Monfort
(Vol. 1, p. 170, 1995) In the first step (5), we maximize the log-likelihood function with
regard tof given¢, known as the concentrated log-likelihoad(p | ¢). In the second step
(6), we maximize the log-likelihood function with regard¢agiven g, namelyL .(¢ | f).
This procedure leads to the maximum likelihood estimaté. of

Sinceg(-) is a nonincreasing function the concavity lof(B | ¢) is guaranteed by
Theorem 6.6 ofLehmann (1983, p. 53f the matrix L[;ﬁ = —$XTD(a)X is negative
definite, that occurs whan > 0, Vi. For exampleg; =1 for the normal case ang= (v +
DHv—u)/(v+ u;)? for the Student-distribution withv degrees of freedom. Therefore,
we will haveq; positive whenevex/v > |y; — ui|/\/$, Vi. Thus, it will be more difficult
to find concavity for small than for large degrees of freedom. This is in agreement with the
results ofPratt (1981) Nevertheless, we may attain concavity even for samneegative.
The concavity ol .(¢ | p) is guaranteed whel'ilw is negative.

For the normal distribution the maximum likelihood estimates take closed-form expres-
sions, because; = 1, Vi. For the Student-distribution withv degrees of freedom, we
haveg(u) = c(1 4 u/v)~"*Y/2 'y > 0 andu > 0 so that W(u;) = —(v + 1)/2(v + u;)
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andv; = (v + 1)/(v + u;), Vi. In this case the current weiglnf’) from (5) is inversely
proportional to the distance between the observed valaad its current predicted value
xiT,B(’), so that outlying observations tend to have small weights in the estimation process
(see discussion, for instance linnge et al., 1980 For the power exponential distribution
with shape parameter=1/(1+k) fixed, g (u) =ce~%5 ™" 4 > 0 andy > 1, then W, (u;) =
—%yu;{_l andv; = yu;-"_l.

We further assume thiit € Q5 C R”, whereg is open with interior points. We have
that is a consistent estimator gf and

~ d _ ) 1
Vn(p— B)— N, (0, Jﬁ/}), whereJg; = lim =K gy.

Then,R[;/}L = 4‘%(XTX)‘1 is a consistent estimator of the asymptotic variance-covariance

matrix ofﬁ. AIso& is a consistent estimator ¢@f, and
b— )4 N©, J1), wh lim
V(= $) = N, Jy5), whereJy; = lim ~K .

N A2 ~
Then,K(;dl) =4¢ /n(4f, — 1) is a consistent estimator of the asymptotic variance.of

3. Restricted estimation
3.1. Equality constraints

Suppose first we are interested in estimating the parameter \@cinderk linearly
independent restrictior@}ﬂ —d; =0, whereC;, j =1,...,k, arep x 1 vectors and
dj, j=1,...,k, are scalars, both known fixed numbers. The problem here is to maximize
the log-likelihood function’(0) subject to the linear constrain® — d = 0, whereC =
(C1,....,C)T andd = (du, ..., d)". Similarly to Nyquist (1991) that investigated this
problem in generalized linear models, we will apply the methodology of penalty functions
by considering the quadratic penalty function

k
1
P0.7)=L(O) - 3 > tidj - Cip)>.

j=1

The procedure consists in finding the solution of naid, t) for positive and fixed values
of 7;, j =1,..., k. The solution forf will be denoted byg(z). The equality restricted
estimate off is given by

= lim _b@.

Tdyee Th—>
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~0
Using similar approach of that givenMyquist (1991)pne may show thgf is the solution
of the following iterative process:

LV =(XTDW)X} IXTDW )y + (XTDv)x}~1CT
<[CXTDW)X}LCTId — CXTDV)X} X TDV)y], 7

forr=0,1,..., Whered)(’) is obtained from (6). The iterative process (7) may be, alterna-
tively, expressed as

oD _pr+D X Tpv)x )T X TDv X)L T L
x(d — Cb" )y, (8)

forr=0, 1, ..., whereb”*D denotegg+1 evaluated at the current restricted estimate. The
authors have developed a librarySAPlus andr to fit symmetrical linear models based in
some distributions and the iterative process (5—8) and more, some diagnostic graphics. This
library is available in the web padetp://www.de.ufpe.brtcysneiros/elliptical/elliptical.
html.

It may be showed under suitable regularity conditions (see, for inst@mgjeroux and

A0
Monford, 1995 Section 10.3) thaf is a consistent estimator $f and

Vi = B2 N, 0.3,

where

30,=  lim [Iim EE{—‘?P(O’?H
T1,..,Tk—00 | n—00 1 aﬂaﬂ

and
oP(0 a4,
E {— ( ’? } = —XTX+C'D(r)C,
opop ¢
with D(zr) = diag{t1, ..., 7¢}. Then, a consistent estimator of the asymptotic variance—

covariance matrix of is given by

T1,eeey Th—> 00 ﬁ[g},

, Adg |7 T o T —1AT\ =1 —1

- A0
which may be evaluated at some consistent estimatgy sfich agg andf .
Suppose now we have interest in testing the hypothékes Cp = d againstH; :
CpB # d. The most usual methods for testing these linear hypotheses are the likelihood
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ratio, Wald and score (Rao) tests. The statistics become here, respectively, given by

& p=2ALB. ) — LB do))

o n N W Y
-2 {% log <@> + log { sl XiAlé)z/({)} ” ,
o) 4 glOi — X B)?/ o}

w=(CB—d)Var(Ch(Ch—d)
=(Cp-d)T(CKchH(Ch—d)

= 4(‘; Cp—d)T{cx™x)"cT}"1cp—d) and

& x=tUpB’, do) — Ug(B, S Varo U8, do) — Ug(B, $))
= UpB". o) R Us8°. G0

- %uﬁ(ifo, $oTXTX) U3, o).
8

whereK g andkgﬁ are evaluated a@, $) and(3°, do), respectively. It follows undeHo

and for largen that&; », &)y and&s, have a central chi-squared distribution whttegrees
of freedom.

3.2. Inequality constraints

The problem of maximizing log-likelihood functions restricted to linear inequality pa-
rameter constrainSff — d > 0 have been investigated by various authors (see, for instance,
Robertson et al., 1988; McDonald and Diamond, 1990; Fahrmeir and Klinger, 1994; Paula
and Sen, 1995 Our primary interest is to obtain the maximum likelihood estimatg of
in model (1) subject to the constrair® — d >0; that is, we want to solve the problem
maxcp—q >0, L (B, ¢). We can apply the Kuhn-Tucker conditions to attain the restricted
global maximum. Consider then the Lagrangian function

k
LB ¢)=LB.$p)+ > 1 (C]B—d).

i=1

whered = (41, ..., /Ik)NT >0 denotes the Lagrange multiplier vector. The sufficient condi-
tions to guarantee thfitcorresponds to the inequality restricted estimate (see, for instance,
Fahrmeir and Klinger, 1994re given by

(i) C}B—d,:Oforj €l C{l,...,k}andCTB>d;forall j ¢ I;thatisBis an admissible
point;

(ii) there existh = (i1, ..., x)' =>0such thab.Z(B, ¢) /0Bl 7 5, =0; that is, (B, )T
is a stationary point; ’
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(i) s"L gps| @ <Oforall s # 0ands {s|CIs— dj=0,jel,/;>0 andC}s—

dj>0,l¢|,/ul/ =0}.

These conditions are equivalent to findiiﬁ@om a searching procedure which consists in
maximizingL (f, ¢) subjecttc(:}ﬂ—djzo,j e l,foreach < {1,..., k}. Theinequality
restricted estimatﬁ is obtained from the maximization problem that fulfils conditions (i),
(i) and (iii). Thus, the inequality restricted problem reduces to a equality restricted problem
that may be solved by the procedures given in Section 3.1.

The asymptotic distribution gf is not necessarily normal. It depends whether the true
parameter value satisfi€ —d > 0or Cg—d=0. For the first case the inequality restricted
estimator coincides asymptotically with the unrestricted estimator and thefefas the
same asymptotic distribution szs However, if the true value belongs to the boundary of
the set of inequality parameter constraints, the asymptotic distributifmas the form of
a truncated normal distribution & — d = 0 (see discussion, for instance,@ourieroux
and Monford, 1995Section 21.1).

4, One-sided tests
4.1. Casel
In this section we will consider the problem of testing the hypoth&gesC—=d against
H, : Cf>d, with at least one strict inequality iH>. The usual statistics likelihood ratio,
Wald and score take, in this case, the forms
~ ~ A0 ~
CLr=2[L(B, d) — L(B ., ¢p)]
i n o XT“‘ 2,7
=2 g log (@) +) " log 810 lAg) /(f)} :
¢/ i g =X B)?/ o}

Ew=(CB—d)T{CK ;yCT)H(Ch - d)

= %(cp —d)T{cxX™X)"cTYCcp—-d) and

Esr=lUg(B. Bo) — Up(B. §)1T(R 91 UpB". o) — Ug(B. B}

_bo {U,;uf $o) — UpB, $ITXTX)"HURE", bo) — Up(B, D},

respectively. In addition, suppose the parameter spagesobpen. Under the regular con-
ditions given inGourieroux and Monford (1995, Section 21,.@8Yollows that the statistics
ErLr, Ew and &g are asymptotically equivalent as a mixture of chi-square distributions,
namely

k

Pri¢p=ch=)_w(k t: A)Priy;>c}+o(l), 9)
=0
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wherec >0,A = CKE/}CT, X% denotes the degenerate distribution at the originagid ¢;

A)’s are known as level probabilities (see definition and expressions, for instaBtapiro,

1985 which are expressed as functions of correlation coefficients associated with the matrix
A. These correlation coefficients are the minimum information necessary to compute the
asymptotic null distribution given in (9) becauggk, ¢; A) depends om\ only through

its correlation matrix. Due to the difficulty of computing the level probabilities for five or
more constraints, several approximations have been proposed (see, for indtarer¢son

et al., 1988 Chapter 3). Nevertheless, computational procedures for computing; A)

are available (see, for exampRohrer and Chow, 1978ndSun, 1988a, b If the weights

w(k, £; A)’s do not depend o through the correlation coefficients associated with the
matrix A, then the distribution given in (9) is unique. Examining the expressiog gf

given in Section 2 we can conclude thdatioes not depend ghin the class of symmetrical
linear models. This properly does not follow in general. For instance, in generalized linear
models it only occurs in some particular cases (see, for inst®acsa and Sen, 1995

4.2. Case 2

Now, we will consider the hypothesd® : Cf>d againstR” — H,. In this case, the
usual statistics likelihood ratio, Wald and score take the forms

¢ R=2{L(B, d) — L(B. $)}

n AR el — X B)%/ ¢} H
=2|=log| =]+ log e ,
[2 <¢) ; {g«yi —x] B)?/ ¢}

&y=(Ch—CBT(CKyiCT) " (Ch - Cp)
= %(Cif —chHTCxX™) ey Ycp-Ccp) and

Er=Up(B. &)T K pp) Us(B. $)

= %uﬁ(ﬁ, MTXTX) " UR(B, ).

Here we should search for the least favorable distributiopgup,, Pr{<} g >c}. How-
ever, due to the lack of functional dependence\cE CKEI%CT on f the least favorable
asymptotic null distribution of{ 5, &}, and S, for the purpose of testingl, against
R? — Hy is attained aC B =d (see, for instanc&)olak, 199). This distribution is uniquely
determined and given by

k
Prigig=ct=>_ k. k— 6 A)Priy}>c}+ o), (10)
£=0

wherec >0. WhenA depends orf the asymptotic null distribution of; , is much more
complicated than (10). A search algorithm should be required in these cases to find the least
favorable situation under the null hypothesis.
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5. Sensitivity study

It is well known that maximum likelihood estimates from symmetrical models with
error distributions presenting heavier tails than the normal ones tend to be less sensitive
to outlying observations. However, few has been investigated on the robustness of such
estimates against influential or high leverage observations in these cases. In order to clarify
this point for some symmetrical models we will present in the sequel a small sensitivity
study in which a particular observation is perturbed in the sense of becoming high leverage
in the simple linear regression= f, + f1x; + &, whereg; ~ S(0, ¢). Then, the behavior
of an appropriate influence measure is studied.

For some particular settings fdly, f; and ¢ andn = 50, x; was obtained from an
exponential distribution of mean 1. We consider for illustratidollowing normal, Student-

t with 12 and 3 degrees of freedom, power exponential 4.3 andk=0.6 and logistic-11
distributions. For the power exponential distribution witls 0 the kurtosis coefficient,

is positive and increases &dncreases. For the logistic-1l distribution one hgs= 1.2

while for normal errory, = 0. After generating the explanatory variablewe made a
perturbation scheme in the largest explanatory variable vahsg,in order to make it a high
leverage point, namelymax < xmax+ 00, for o € [0, 3]. Then, we calculated the measure
W) = {f; — ﬁl(é)}Z/Var{ﬁl(é)} where ; denotes the true valuél(é) denotes the
estimate of3; under the perturbatiohand Vai /31(5)} is the approximate variance ,6{(5)
Although W(0) assumes a similar form of the Wald statistic we are indeed assessing the
distance betweefl; andﬁl(é) under the metric AVar{ﬁl(é)}. In order to confirm the high
leverage ofcmax underd = 3, we calculate the principal diagonal elements of the leverage
matrixH = (09/dy"). FromWei et al. (1998yve find thatH =X {XTD(a)X} X "D(a). The

index plot off;; = a;x] {(XTD(&)X}~x; for = 3 is presented iffig. 1and the behavior of

W(9) is described irrig. 2for the particular setting gf; =1, f; =2 and¢ = 2. As we can

see from this last figure the maximum likelihood estimatq&ldfom the logistic Il, power
exponential witht = 0.6 andk = 0.3 and Student-with 3 and 12 degrees of freedom,
respectively, seem to be more robust against the perturbation scheme and consequently
against high leverage points. Similar tendencies were observed for other configurations of

Bo, B1 andg.

6. Example

In this section we will reanalyze the example discussedRbynanathan (1993)n a
study in which seven variables were observed in 40 metropolitan areas (see Table 10.1
Ramanathan, 1993The main interest is on regressing the number (in thousands) of sub-
scribers with cable TYY) against the number (in thousands) of homes in the @eg the
per capita income for each television market with caide), the installation fe€X3), the
monthly service charg€X4), the number of television signals carried by each cable system
(Xs) and the number of television signals received with good quality without catye
BecauseY corresponds to count data we will use a square root transformation in order to
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Fig. 1. Index plot oﬂ?i,» for the parameter estimates of the symmetrical perturbed méélels8) under errors (a)
normal, (b) Student-with 3 d.f., (c) Student-with 6 d.f., (d) PE(0.3), (e) PE(0.6) and (f) Logistic-II.

8.0 1
T — Normal
7.0 © t-Student with 12 d.f.
u =~~~ t-Student with 3 d.f.
——- PE(0.3)
6.0 -= PE(0.6)
4 Logistic i
. 5.0 e
> i
; 4.0
3.0 /\,»
2.0
1.0 H
0.0
T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0
19

Fig. 2. Behavior of the distand& (0) under perturbations in the largest explanatory variable value.
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Table 3
Unrestricted maximum likelihood estimates (standard errors in parenthesis)
Parameter Normal I PE(0.3) Logistic— Il
bo 2.319 3.335 2.635 3.122
(2.233) (1.866) (1.939) (1.907)
b1 0.034 0.035 0.034 0.034
(0.002) (0.002) (0.002) (0.002)
po 0.0002 0.0001 0.0002 0.0001
(0.0003) (0.0002) (0.0002) (0.0002)
B3 0.035 0.010 0.023 0.014
(0.040) (0.033) (0.034) (0.034)
Pa —0.245 —0.318 —0.268 —0.301
(0.182) (0.152) (0.158) (0.155)
Ps 0.134 0.118 0.122 0.119
(0.059) (0.049) (0.052) (0.051)
Pe —0.361 —0.319 —0.335 —0.327
(0.134) (0.111) (0.116) (0.114)
1) 1.015 0.665 0.573 0.298
(0.227) (0.182) (0.146) (0.078)

try to stabilize the variance. Then, we propose the model

6
ﬁ:ﬂ0+zﬂjxi./+8i’ i:].,...,40, (11)

j=1

whereg; ~ S(0, ¢) are mutually independent errors. In addition, it is reasonable to expect

in this example that the effect of each coefficient is unidirectional, although the opposite
direction is not theoretically impossible. For instance, one may have interest in assessing
if the number of subscribers decreases as the monthly service charge increases, that is, to
asses#ly : f,=0against; : i, < 0. Following the same idea for the remaining variables

one may have interest in assessing the directianso, 5, >0, f3<0, f5>0 andfs < 0.

6.1. Analysis under normal error

We first fitted the model (11) by assuming normal errors. The unrestricted estimates
are given in the first column dfable 3. Applying one-sided tests we do not reject the
hypotheses of each coefficieby, f; andf, be equal to zero, at the significance level of
5%, while some doubt appears for the coefficiggntor which thep-value is about 3%. The
remaining coefficient§, andfg are highly significant in the one-sided directions. The only
estimated coefficient with opposite sign[i§, but it is not due to multicollinearity that is
negligible in this example. Thus, in order to assess if at least one of the coeffjgjefits 5,
andfs is in the one-sided direction, we apply the statistical tests defined in Section 4.1 to
assess, the hypothesHs : Cp = 0 againstH, : Cf >0, with at least one strict inequality
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Table 4
Statistical test values and thevalues (in parenthesis)

Statistics Normal 16 PE(0.3) Logistic— 11
ESR 6.61 8.54 9.11 8.50
(0.16) (0.07) (0.06) (0.07)
&R 7.23 8.65 8.33 8.32
(0.12) (0.07) (0.08) (0.08)
& 7.92 8.87 7.7 8.21
(0.09) (0.06) (0.10) (0.08)
Esr 5.87 8.39 8.66 8.26
(0.06) (0.02) (0.02) (0.02)
ELR 6.33 8.56 7.94 8.14
(0.05) (0.02) (0.02) (0.02)
Ew 6.85 8.90 7.54 8.14
(0.04) (0.01) (0.03) (0.02)
in Hy, where
0 01 O 0 O
c— 000 -1 0 00O
10 00 O -1 0O
0 00 O 0 1

The results from the statistical tesps\alues in parenthesis) are available in the first column
of Table 4. It may be showed that the asymptotic null distribution of the statistigs
Egp and &y is a mixture of chi-squared distributions with weighit$0, 4; A) = 0.0714,
w(l,4; A) =0.2610,w(2, 4; A) = 0.3728,w(3, 4; A) = 0.2389 andw(4, 4; A) = 0.0556.
The results indicate that the null hypothesis is not in general rejected, at the level of 10%
for the two-sided tests and at the level of 5% for the one-sided tests.
However, due to the lack of robustness of the least-squared estimates against outlying
observations we performed some residual anal¥sis.3a presents the plot of, = (y; —

~

) /A ¢E, i=1, ..., n,against the fitted values. The graphic does not give indication of any

systematic tendency suggesting th4t should stabilize the variance of the errors. Never-
theless, area 14 appears with a large residual value (greater than 3) indicating the possible
influence of this observation on the decisions from the statistical tests. The generated enve-
lope, as proposed b4tkinson (1981) is presented ifrig. 4a noticing that the assumption

of normal distribution for the errors does not seem to be inappropriate, even though area
14 appears outside the envelope. Elimination of this area reduces drasticgllydhess

of the statistical tests as we can see from the first colunTiable 5. Indeed, area 14 has a

high installation fee and a relatively high monthly service charge which are in disagreement
with the high proportion of homes with cable TV. The index plot of the local total influence

Ci (see, for instance,esaffre and Verbeke, 1998; Galea et al., 2083iven inFig. 5a for

the normal case. As we can see from this figure areas 14 and 1 appear as the most influential
observations. Elimination of area 1 makes all the statistical tests non-significant (see the
first column ofTable §. This area has a small number of homes with cable TV but a large
number of television signals received with cable.
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Fig. 3. Plots ofr5; against the fitted values for the symmetrical model (11) under errors (a) normal, (b) Student-
with 6 d.f., (c) PE(0.3) and (d) Logistic-II.

Table 5

Statistical test values and tpevalues (in parenthesis) dropping area 14

Statistics Normal 17 PE(0.3) Logistic— Il

&SR 10.90 11.14 11.73 11.38
(0.03) (0.02) (0.02) (0.02)

&R 12.79 11.42 12.42 11.67
(0.01) (0.02) (0.01) (0.02)

Ew 15.13 11.86 13.97 12.21
(0.00) (0.02) (0.01) (0.01)

Esr 10.90 11.14 11.73 11.38
(0.01) (0.00) (0.00) (0.00)

ELR 12.79 11.42 12.42 11.67
(0.00) (0.00) (0.00) (0.00)

Ew 15.13 11.86 13.97 12.21

(0.00) (0.00) (0.00) (0.00)
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Fig. 4. Normal probability plots for the residug| for the symmetrical model (11) under errors (a) normal, (b)
Students with 6 d.f., (c) PE(0.3) and (d) Logistic-II.

6.2. Analysis under other symmetrical errors

In order to accommodate areas 1 and 14 or at least to reduce their influence on the results
from the statistical tests we refitted model (11) by assuming distributions for the errors with
heavier tails than the ones of the normal distribution. First, we fitted a model with errors
following a Student- distribution withv degrees of freedom. If we assume- 4, then a
consistent estimate forcan be obtained from the residuals=y; — y;,i =1, ..., n. This
estimate is given b= (41,1 —6)/ (47,1 —3), wheredip 1=(1/n Y 1_1rH) /(1/n 3t 1r?)?
(Arellano-Valle, 1994. For the data set of the example above we fird 6. The unrestricted
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Table 6

Statistical test values and tpevalues (in parenthesis) dropping area 1.

Statistics Normal 16 PE(0.3) Logistic— Il

EhR 3.10 6.39 5.52 5.89
(0.54) (0.17) (0.24) (0.21)

& e 3.23 6.40 5.02 5.66
(0.52) (0.17) (0.28) (0.22)

é"‘,v 3.36 6.78 4.39 5.56
(0.50) (0.15) (0.35) (0.23)

Esr 2.84 6.39 5.48 5.89
(0.24) (0.05) (0.07) (0.06)

ELR 2.95 6.40 5.00 5.66
(0.23) (0.05) (0.09) (0.07)

Ew 3.06 6.80 4.45 5.56
(0.22) (0.04) (0.12) (0.07)
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maximum likelihood estimates for the parameters under the Studkstribution withv=6
degrees of freedom for the errors are given in the second colurifabdé 3 The values

of the statistical tests for both two-sided and one-sided tests, as described in the second
column ofTable 4 indicate for the rejection of the null hypothesis at the significance levels

of 10% and 5%, respectively. The residual analyses undet mthedel are described in

Figs. 3 and4b, indicating that area 14 which appears with a large residual as in the normal
case is here accommodated into the envelope. The generated envelope for the Student-
t model does not present any unusual feature. If we eliminate area 14 the values of the
statistical tests, as described in the second coluriialoi® 5 do not change as in the normal

case confirming the robustness of the Studetistribution against outlying observations.

Fig. Sb presents the index plot @f; for the Student-model and as we can observe from

this figure areas 1 and 21 appear with large influence. Elimination of area Tgkkx
changes the decision based on the two-sided tests but does not change npsealties

from the one-sided tests.

Two other error distributions with heavier tails than the normal were also assumed, power
exponential withkk =0.3 and logistic-1l models. We take arbitrarity=0.3 in order to try ac-
commodating the outlying observation 14. The unrestricted maximum likelihood estimates
for the parameters of the power exponential and logistic-1l models are, respectively, given
in the third and fourth columns dfable 3 The values of the statistical tests are presented
in the third and fourth columns dfable 4 We can notice a similarity among the results
for these two models and the Studentrodel withv = 6 degrees of freedom. Looking at
Figs. &, 3d, 4c and4d we can observe that area 14 also appears as an outlying observation
under these two models, but the generated envelopes have similar behaviors to the one of
the Student-model. The index plot of Cgiven inFigs. & and5d confirm the influence of
areas 1 and 14. Elimination of area 1 changes morp-tfedues from the statistical tests for
the power exponential model, in the sense of non rejecting the null hypothesis, than under
the Student-and logistic-1l models.

Our main conclusion for this example is that the transformatidhseems to stabilize
the variance of the response, but the Studepbwer exponential and logistic-1l models
are less influenced by the outlying observation 14. The one-sided tests based on these three
fitted models indicate for the rejection of the null hypothesis at the significance level of
5% while under the normal model the rejection becomes more evident after dropping the
outlying observation 14. However, the Studemtodel seems to be more robust against the
influential observation 1 than the other three models. If we continue the selection process
with this model only the coefficien{$, andfi; are removed from the model. Thus, the final
model becomes given bW W + &, whereg; ~ tg(y;, ¢) with ; = fog + prxin +

Baxia + Psxis + Pexie and Bo = 4.727(0. 993, By = 0.0350.002), B, = —0.2930.147),
Bs = 0.111(0.049), B = —0.2630.092) and¢ = 0.672(0.184).

7. Concluding remarks

In this paper we develop iterative processes relatively simple to be implemented for
evaluating restricted maximum likelihood estimates for the parameters in symmetrical lin-
ear regression models. We have developed codesRius andR to fit restricted and
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unrestricted symmetrical linear regression models, which are available in the web page
http://lwww.de.ufpe.brfcysneiros/elliptical/elliptical.ntmlWe also verified, under some
regularity conditions, that the asymptotic null distribution of the one-sided statistical tests
is a mixture of chi-square distributions. The asymptotic null distribution is unique for the
cases 1 and 2.
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