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h i g h l i g h t s

• Classification images are psychophysical estimates of perceptual mechanisms that resemble ‘filters’.
• They are almost invariably connected with human discrimination via a template-matching operation, however the connection is far more opaque than

envisaged by this operation.
• Extension to higher-order statistical properties of the classified noise is necessary for adequately constraining potentially underlying circuit models.
• Classification images are best thought of as rich descriptors of data structure, rather than intuitively interpretable snapshots of system components.
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a b s t r a c t

Classification images have become popular tools in psychophysics, yet difficulties associated with their
interpretation have often hindered their application. Alternative methods for characterizing perceptual
filters have been proposed, and the discussion has often focussed on the degree to which classification
images are optimal statistical estimators of system components (e.g. kernels). This technical note argues
that those difficulties become irrelevant once the tool is situated within a data-driven interpretational
framework. Within this framework, classification images and their nonlinear derivatives are understood
not as transparent estimates of system components, but instead as transparent descriptors of data
structure. The many pitfalls associated with the former approach, and the power of the latter, are
demonstrated via combination of counter-intuitive computer simulations with empirical examples from
published literature. A change in perspective over themanner inwhich this tool is understood and utilized
may lead to a more productive engagement with this methodology.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. What is a classification image, and why is it useful?

We constantly ‘filter’ the world around us. Our sensors (eyes,
ears, nose, tongue, skin) are bombarded by signals of various kinds,
and our ability to discriminate between two such signals (e.g. blue
versus red colours) relies on perceptual filters that retain one
signal and throw out the other. Our brain then exploits the activity
of many such filters to perform specific actions for the purpose
of successfully interacting with the environment. In its simplest
account, this filtering process can be summarized by a trace (bell-
shaped curve in Fig. 1A) that records the response of the perceptual
filter (plotted on the y axis) to different values of an environmental
characteristic, such as the position of an object along the horizon
(plotted on the x axis). From Fig. 1A we infer that this specific
filter is selective for objects sufficiently close to themiddle position
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along the x axis (stimulus in Fig. 1C), but stops responding when
the object is moved further away from the midpoint (Fig. 1D).

The filtering stage outlined above returns a continuous value.
Our behavioural decisions, however, do not come in this format:
we either decide to run away fromapredator, or stay put;we either
eat a potentially poisonous food item, orwe drop it. In otherwords,
most decisions we take on howwe use our sensory representation
to interact with the world are discrete (typically binary): we either
choose to take an action, or we choose not to. How do we go from
our perceptual representation, which comes in the form ‘it is 2×
more likely that a predator is hiding behind that bush than not’, to
the decision ‘run away!’?

The simplest model of how this conversion may happen in-
volves a threshold (Green & Swets, 1966): if the ratio between
the likelihood of ‘predator’ versus ‘non-predator’ is greater than
some value, e.g. 1, we run away; if it is smaller than that value,
we stay put. Because we tend to produce this kind of response
somewhat erratically, i.e. our estimate of the likelihood is not
always identical under the same environmental conditions due
to noise in our sensors and our decisional process (Green, 1964;
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Fig. 1. The linear–nonlinear model consists of a linear filtering stage (A) followed
by a nonlinear static nonlinearity (B). The linear filter specifies weights associated
with different portions of the incoming stimulus (e.g. different bar positions along
the x axis) and converts each stimulus into a single decision variable. The static
nonlinearity takes the decision variable as its own input, and converts it into a
psychophysical choice (‘yes’ versus ‘no’ in this example) according to a specified
probabilistic rule. Solid/dashed grey lines indicate processing paths through this
model for well-matched and mismatched example stimuli (C/D). When stimuli
contain multiple bars (E–G), the filter in A acts as a weighting function that sums
across bars.

Neri, 2010a), any model of what decision we take must be itself
probabilistic: it can only predict thatwewill runwith probability x.
To this end, themodel in Fig. 1A converts the output from the filter
(on the y axis) onto the probability that it will lead to one of two
binary choices (e.g. ‘yes’ versus ‘no’). The ‘link’ function is called a
static nonlinearity (an example is shown in Fig. 1B). This function
is necessary if one is to re-format the output of the filtering stage
into the currency of real-world actions.

The combination of the filtering stage and the static nonlinear-
ity in Fig. 1A–B is termed a ‘linear–nonlinear’ (LN) model (Murray,
2011; Ostojic & Brunel, 2011): the ‘linear’ part is the filtering stage
(A), the ‘nonlinear’ part is the static nonlinearity (B). This is a
minimal model: anything simpler will not provide a description of
sensory processing that is evenpassable (Neri, 2015). It is therefore
understandable that this model is used as a reference point in
computational accounts of sensory processing by neurons (Osto-
jic & Brunel, 2011) as well as observers (Murray, 2011): it is a
sensible building block to start with; more complex models can
be constructed using blocks of this kind (Carandini et al., 2005) if
called for by the phenomenon under study (e.g. Fournier, Monier,
Pananceau, & Fregnac, 2011). In particular with relation to the
topic discussed in this article, the LN model is often regarded as
the theoretical foundation for computing classification images in
sensory psychophysics (Ahumada, 2002; Murray, 2011), which
brings us to the question: what are classification images?

If we accept the LN model as an adequate representation of the
sensory process at hand, say human vision, the classification image

is an ‘image’ of the filtering stage in Fig. 1A: when the underlying
sensory filter takes on the shape in Fig. 1A, so will the classification
image (Ahumada, 2002). In otherwords, if our viewpoint is informed
by the LN model, the classification image technique is a tool for
deriving a picture of the filtering stage (Murray, 2011).Why should
we want to obtain such a picture?

Classical approaches to sensory processing in animals, e.g. Fech-
nerian psychophysics, have traditionally emphasized perfor-
mance: the experimenter focuses on measuring how well the
animal can detect/discriminate among different signals (Green &
Swets, 1966). From thesemeasurements, inferences are sometimes
made about the possible shape of the filtering stage, but this is typ-
ically achieved via indirect routes (e.g. poorly constrained models
with several free parameters) or not at all: the transduction from
stimulus to filter output is modelled as a static nonlinear function,
effectively incorporating it into the N portion of the LN model
and shifting the focus of the investigation onto this component
alone (Solomon, 2009). With classification images, the opposite
approach is taken: the focus is shifted onto the filtering stage,
while the decisional nonlinearity that maps filter output onto
choice is bypassed (Neri, 2010b). In this sense, the two approaches
are complementary and should be used synergistically whenever
possible (Neri, 2011b, 2014b).

There are two critical ingredients that enable this technique to
take a snapshot of the filtering stage in a way that is not accessible
to e.g. Fechnerian psychophysics. First, the injection of a controlled
small perturbation into the stimulus: external noise. To provide a
simple example, if observers are asked to discriminate between
a bar in the middle (Fig. 1C) and a bar to the side (Fig. 1D), the
luminance of each image bar along the x axismaybe independently
jittered by a random source (see toy examples in Fig. 1E–G). In
this way, the output of the filtering stage in the observer’s brain
will not always be the same in response to the central bar, due to
small fluctuations introduced by the added pixel noise; further, the
decision taken by the observer on the basis of the filter output will
also vary from trial to trial (see ‘yes’/‘no’ responses corresponding
to Fig. 1E–G), and those variations will depend on the fluctuations
introduced by the noise. Sometimes, the added pixel noise will
make a bar-in-the-middle stimulus look very much like a bar-to-
the-side stimulus; on those trials, the observer will likely classify
the bar-in-the-middle stimulus as bar-to-the-side. On other trials,
the added noise will emphasize those features of the bar-in-the-
middle stimulus that set it apart from bar-to-the-side; on those
trials, the observer will likely classify the bar-in-the-middle stim-
ulus as containing a bar in the middle. The term ‘classification’ in
‘classification images’ comes from the classification carried out by
the observer as just described.

The addition of noise per se, however, is not in itself new: there
is a long tradition of using stimulus noise to study its impact on
performance (Ahumada, 1987; Pelli & Farell, 1999). The additional
ingredient is that, when adding noise, the experimenter keeps
track of the specific noise sample that was added on every separate
perturbation that led to a classification by the observer (Ahumada,
1967; Ahumada & Marken, 1971). This is different than classical
approaches where, say, 1000 trials are run at some noise intensity
x1 to measure observer performance p1 (whatever metric is used
to assess it), this process is repeated for different noise intensity
values x2, x3 and so on, and finally the relationship between x and
p becomes the main subject of investigation. In those approaches,
the specific noise samples presented during the 1000 trials at
intensity x1 are all lumped into one classwithout regard for the fact
that, on some of those 1000 trials, the specific noise sample that
was added to the target signal may have made it easier to detect,
while the opposite may have been true for other noise samples
in the 1000 trial sequence. In the classification image technique,
different noise samples (even if generated by a noise source of
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fixed intensity x1) are treated differently, and are separated into
different classes depending on the individual choices generated
by the observer in response to those specific samples (no–yes–
no sequence in Fig. 1E–G). For example, if the observer responded
‘bar-in-the-middle’ on the 13th, 17th, and 23rd trials, we average
the noise samples presented on those specific trials to obtain a
‘classification image’ of the typical (i.e. average) noise sample that
would lead observers to respond ‘bar-in-the-middle’. In this way,
we obtain a picture of the filter engaged by the observer to filter out
a bar in the middle: we throw noise at it, study how specific noise
fluctuations drive specific responses from the observer, and make
the connection between the two. In the LN model, the connection
is instantiated by the linear filter; therefore, by working out the
connection, we are also characterizing the filter itself.

1.2. Should we take the linear–nonlinear model out of the picture?

As outlined in the previous section, classification images are
used to characterize the way in which sensory stimuli are pro-
cessed by humans engaged in specific detection/discrimination
tasks (Murray, 2011). They are easy to compute: a human par-
ticipant is asked to classify stimuli into categories (e.g. ‘target
present’ versus ‘target absent’), and simple statistical properties of
the stimulus samples associated with the different categories are
summarized for inspection (Ahumada, 2002). In a typical example,
wemay separately average all noise samples associatedwith false-
alarm trials (those on which the observer was presented with a
stimulus containing only noise but reported seeing the target),
misses, hits and correct rejections; the resulting four averages
can be combined via simple rules (adding false alarms and hits,
subtractingmisses and correct rejections) to obtain a picture of the
underlying perceptual mechanism (the filtering stage introduced
in the previous section). The accessibility of this procedure has
been a benefit and a curse. On the onehand, it has led to its popular-
ity in contemporary psychophysics (Murray, 2011). On the other
hand, it has obscured complex issues regarding the interpretability
of the outcome, a correct evaluation of which requires far more
sophistication than suggested by the simplicity of the rules by
which it is obtained (Victor, 2005).

It is not surprising that these difficulties should arise. The ini-
tial theoretical drive behind classification images was the linear–
nonlinear model introduced in the previous section, also termed
‘template matcher’ (Brunelli & Poggio, 1997) in the perceptual
literature. This is still widely accepted as the appropriate con-
ceptual tool for thinking about classification images (Ahumada,
2002; Murray, 2011; Neri, 2015). There are two fundamental
problems with the linear–nonlinear framework and its association
with classification images: (1) this framework rarely applies to
human sensory processing (Neri, 2010c; Tjan & Nandy, 2006), in
fact it may never fully apply (Neri, 2015); (2) when it does not
apply (e.g. Abbey & Eckstein, 2006; Neri, 2009, 2011a; Tjan &
Nandy, 2006), any inference drawn from classification images that
relies on this framework is tentative at best, grossly misleading at
worst. In this article it is not only emphasized that classification
images can be computedwithout reference to the linear–nonlinear
framework, but more importantly that they should be computed
in this manner: the linear–nonlinear framework should play no
role because it represents more of a burden than an aid, and
classification images become more powerful tools when relieved
of this burden.

The view expressed here is illustrated by the following simple
example drawing on familiar concepts. We measure one dimen-
sion of a given phenomenon and obtain 1000 measurements. We
need to inspect and evaluate these measurements, and we need to
communicate them to fellow scientists. Communication to others
must be transparent: it must allow the recipient to retain prox-
imity with the raw data within the limits of feasibility afforded

by the medium of communication (e.g. article, conference, etc.).
For the hypothetical dataset just considered, it is typical to offer
surrogate descriptors such as the average value across the 1000
data points. When we report the mean, we do not assume an
underlying distribution for the data points: we simply report the
mean. Whoever is on the receiving end of our communication will
have no difficulty relating to this object, thanks to its simplicity and
transparent relationship with the data.

A different approach involves setting up a model of the phe-
nomenon under study, fitting the output of this model to the
1000 measurements, estimating the parameter(s) of the model,
and reporting the best-fit parameter(s) in place of the mean. This
approach is valuable and often more informative than reporting
themean. If we accept the underlyingmodel and carry out optimal
inference of the parameters, it is the approach we should favour.
However, it is completely different than reporting a transparent
descriptive statistic like the mean. In general, data inspection via
the model parameter affords less proximity with the raw data,
so that the term ‘descriptive statistic’ is not entirely appropriate:
the best-fit parameter is not a transparent summary of the data;
it is meant to convey information about the data in the form of
inference, notmerely description, and cannot be arrived atwithout
committing to amodel. A descriptive statistic like themean, on the
contrary, can be computed regardless, and its relationshipwith the
raw data can be transparently gauged by anyone familiar with the
basic notion of averaging.

Classification images should be regarded as descriptive statis-
tics like the mean or the median, rather than estimates of underly-
ing model components. If the goal is to obtain a simple statistical
relationship between noise input and response output, there is no
simpler way of computing this description than the classification
image: the current procedure for computing a classification image
is justified on the mere basis of attempting a minimal statistical
description, without any need for a model. When viewed from this
perspective, several difficulties disappear. In particular, the thorny
issue of what relationship a classification image may have with
the underlying ‘perceptual filter’ (Murray, 2011; Neri & Levi, 2006)
(whatever that may be) becomes immaterial: the classification
image is not computed with relation to the (vague) concept of
perceptual filter or any similar constructs, it is simply computed
using a straightforward combination of basic operations (Ahu-
mada, 2002;Neri, 2010b) (averaging, summing, subtracting) on the
raw data for the purpose of providing a transparent description
of said data. Specific conclusions about the underlying perceptual
processmay be inferred from classification images in the sameway
that one may infer some aspects of a measurement distribution
from descriptive statistics like the mean or the median, but this
secondary process bears no implication for the validity of the
classification image itself.

If we adopt this perspective, the classification image is then a
valid description of the data that can be computed regardless of any
underlying model, and that retains close proximity with the raw
structure of the data. No more, no less. This state of affairs differs
from those associated with approaches that, on the surface and in
the literature, have been discussed in connection with classifica-
tion images, like statistical inference of system kernels via general-
ized linearmodels or related techniques (Gilkey & Robinson, 1986;
Knoblauch & Maloney, 2008; Neri, 2004; Oberfeld, 2008): those
approaches necessitate a model, do not retain proximity with the
raw data, and do not fall into the category of descriptive statistics.
These issues are clarified in the remaining part of the article with
the goal of enhancing classification images as effective and reliable
tools for understanding human sensory processing.

We conclude this introductory section with a brief reference
to the distributed aperture technique (Haig, 1985) (DAT), termed
‘Bubbles’ in subsequent developments (Gosselin & Schyns, 2001).
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This methodology is often discussed alongside classification im-
ages (Gosselin & Schyns, 2004; Murray & Gold, 2004), however
it is not included in the present article because we believe that it
is largely distinct from classification images, and that the reasons
for discussing it in conjunction with classification images aremore
superficial than commonly believed in mainstream literature. In
essence, the point of contact between the two techniques is that
they both introduce a random perturbation into the stimulus
and capitalize on trial-by-trial fluctuations of said perturbation,
an approach more generally termed ‘molecular psychophysics’
(Green, 1964). It should be noted that other techniques rely on
these same features (e.g. the double-pass protocol for estimating
internal noise, Burgess & Colborne, 1988; Neri, 2010a) yet are
rarely discussed alongside classification images (with some excep-
tions Ahumada, 2002), meaning that this commonality between
DAT/Bubbles and image classification is not essential. Beyond this
common feature, the differences outdo the commonalities (see
below).

In DAT/Bubbles, noise comes in the form of an envelope
modulation of the existing signal-to-be-detected (or signal-to-
be-discriminated), rather than an independent additive perturba-
tion (Murray & Gold, 2004). For this reason, DAT/Bubbles is better
characterized as a form of masking, rather than a variant of classi-
fication images (it is telling in this respect that the early DAT litera-
ture (Haig, 1985) does not refer to pre-existing published work on
classification images (Ahumada, 1967; Ahumada &Marken, 1971;
Ahumada, Marken, & Sandusky, 1975); this debatable connection
was introduced by later literature (Gosselin & Schyns, 2004;
Murray & Gold, 2004)). Similarly to masking, DAT/Bubbles does
not retrieve the perceptual template, but rather the intersection
between the template and the signal-to-be-detected (Gosselin &
Schyns, 2001, 2002). This is different than image classification,
where the noisy perturbation can generate features that are not
present in the signal-to-be-detected and is therefore in a position
to map template characteristics besides those directly targeted
by the signal-to-be-detected (Murray, 2011). A further point of
departure is represented by the different domains of enquiry that
are best investigated by the two methodologies: DAT/Bubbles
presents several advantages over noise image classification when
studying higher-level perceptual phenomena such as faces (Gos-
selin & Schyns, 2001; Haig, 1985), while noise image classification
may be preferable when studying lower-level phenomena and
in particular when attempting computational characterizations
of those phenomena (Murray, 2011; Neri, 2015). In conclusion,
DAT/Bubbles and noise image classification are distinct method-
ologies to an extent that the former falls beyond the scope of the
present article.

2. Results and discussion

2.1. Defining the scope of the LN characterization adopted here

As mentioned in the Introduction, it is (unfortunately) impos-
sible to discuss classification images (henceforth CI’s for brevity)
without reference to the linear–nonlinear (LN) model (Murray,
2011; Neri, 2015). To avoid ambiguity in discussing this simple
model for application to the examples considered in this article,
we briefly define its implementation here in relation to the human
observer: if the observer is asked to choose between stimulus s[1]

and stimulus s[2] (both defined by vectors), the LN model applies
filter f to s[1]

− s[2] via inner product ⟨s[1]
− s[2], f⟩, the output o of

this operation (a scalar) is corrupted by the addition of an additive
internal noise source (typically Gaussian), followed by conversion
to a binary response (e.g. ‘stimulus #1’ if o > 0, ‘stimulus #2’ if
o < 0). This formulation is equivalent to that presented in Fig. 1
(see further below for clarification of this point).

The above definition of LN transduction may seem restrictive:
it only applies to two-alternative-forced-choice (2AFC) protocols,
and its only nonlinearity is the binary conversion at the output.
As a matter of fact, most considerations in this article apply to
a wider range of protocols and LN-like model architectures; we
restrict the definition so that we can discuss specific example im-
plementations of the relevant topics. We choose the 2AFC protocol
because it is by far the most common and most reliable protocol
for psychophysical characterization: in the class of binary response
protocols, the other common alternative is the yes–no single-
interval design, however it is well-known that this paradigm suf-
fers from potential confounds associated with bias in the response
criterion (Green & Swets, 1966). There are laboratory situations
when the experiment of interest cannot be satisfactorily formu-
lated according to a 2AFC design, in which case yes–no paradigms
must be chosen; in all other instances, however, the 2AFC design
should be given priority to avoid criterion confounds (Neri, 2010b),
and for this reason it is given priority here.

Our choice to restrict the nonlinear stage to the output bi-
nary conversion is consistent with established literature on this
topic (Pritchett & Murray, 2015). It coincides with the linear
amplifier model (LAM), the standard tool for discussing template-
matching in psychophysics and its connection to CI’s (Ahumada,
2002; Murray, 2011; Murray, Bennett, & Sekuler, 2005). It is also
consistent with analogous definitions for single neurons, where
the nonlinearity is represented by Poisson conversion to spike out-
put (Priebe & Ferster, 2008): if we treat human observers and sin-
gle neurons as input–output devices within a common framework,
spike conversion corresponds to psychophysical choice (Neri,
2010b) (both implemented by a static nonlinearity). Finally, under
some conditions the LAM provides an accurate description for
the operations of human vision (Neri, 2015): it is not merely an
abstract tool, it is also a useful tool for practical applications.

It may appear that the above formulation is distinct from those
where the nonlinear function is made explicit and potentially
parameterized in a number of different ways: in those formu-
lations (Neri, 2010b; Nykamp & Ringach, 2002), the output is
expressed as Ψ (⟨s, f⟩) where Ψ is a static nonlinear function typ-
ically sigmoidal in shape. In fact, this formulation largely overlaps
with the one we adopt here because Ψ specifies the probability
of producing response #1 as opposed to response #2 in a binary
response protocol (Neri, 2010b; Nykamp & Ringach, 2002). For
the binary conversion model adopted in this article, Ψ is a step
function in the absence of internal noise, and a cumulative density
function in the presence of additive internal noise. Internal noise
was adopted for the simulations in Figs. 3 and 6, not in Fig. 4
(in Fig. 3, it enabled targeting of specific d′ values to match the
distributions in Fig. 3C; in Fig. 6, a realistic level of internal noise
(1.3 ratio between internal and external noise standard devia-
tion Neri, 2010a)was included to ensure that the simulations could
replicate the human data under plausible conditions; in Fig. 4, in-
ternal noise had no impact on the simulations (except for reducing
reliability) and was therefore omitted). The presence of internal
noise affects the shape of Ψ , but besides this change of parame-
terization for Ψ we do not explore a wide range of specifications
because that is unnecessary for the argument put forward in this
study: here we wish to demonstrate some interpretational issues
associated with classification images under plausible scenarios,
and binary conversion is entirely plausible (Pritchett & Murray,
2015). Furthermore, our formulation of the LN model belongs to
the same family as those where the nonlinear function is made
explicit in the form of a probabilistic transducer between the
output of the linear stage and the end binary response, as clarified
above (Neri, 2010b; Nykamp & Ringach, 2002).
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2.2. The connection (or lack thereof) between sensitivity and the
classification image

The LN model is a highly tractable one which we understand
in great detail, and for which we can make clear-cut quantitative
predictions (Ahumada, 2002). An important result relating to this
model and its connection with CI’s is that, if the model applies,
we can use the CI to predict absolute efficiency (Murray et al.,
2005). This connection remains important evenwhenwe ignore its
quantitative nature (which is what we normally do when thinking
about LN models): we can still reason qualitatively about CI’s
without exact predictions of the associated efficiency. For example,
if we know that the signal-to-be-detected is an impulse at position
0 on the screen, andwe find aGaussian-shapedCI centred on0with
a spread of 0.1◦ under condition #1, versus a spread of 1◦ under
condition #2, we expect that d′ will be higher under condition #1
as opposed to condition #2 (we are assuming that stimulus SNR
does not change between the two conditions). This expectation
derives from the way we think about ‘filters’ or ‘templates’, and
we have developed amanner of reasoning about these objects that
is intimately connected with the LN model (Neri & Levi, 2006;
Spillmann, 2006).

It is often taken for granted that, even if the LN model does
not apply exactly but only approximately, our broad conclusions
about the connection between CI’s and sensitivity remain valid:
we accept that the human observer does not behave like an LN
model (Neri, 2015); nevertheless, we maintain that by reasoning
about filters and kernels as we normally do, we will still get it
right ‘more or less’ (Neri & Levi, 2006; Spillmann, 2006). We may
under or overestimate the amount by which filter #1 should un-
der/outperform filter #2, but the direction of the difference should
stay the same: we can still guess which one will do better. As
discussed below, this approach can in fact produce spectacularly
wrong answers. It is comparable to devising an explanation for the
Hermanngrid illusion based on centre-surround filters: sometimes
it works (Spillmann, 1971; Spillmann, Ransom-Hogg, & Oehler,
1987), other times it is entirelymisleading (Geier, Bernath, Hudak,
& Sera, 2008).

The connection between the CI and sensitivity (d′) is broken in
both directions: from sensitivity to the CI, and from the CI to sen-
sitivity. Here ‘broken’ means that it is not a mathematical function
in that it is not injective even when formulated in its most general
sense: if we take the relation in the direction sensitivity→CI, given
the set of all possible d′ values and the set of all possible CI’s for
a given experiment (i.e. specified stimulus and task), we cannot
always assign a unique CI to a given d′ value. In other words, there
may be two different CI’s that produce the same d′ value or, said
the other way around, if we are given a certain d′ value and asked
to predict what the associated CI will look like, we cannot say, not
even in rough terms.

Clearly, such state of affairs greatly reduces the utility of the
relation for quantitative purposes. But that in itself would not be
hugely problematic, were it not for the fact that the breakdown is
so extreme as to render it useless for qualitative reasoning too. The
latter statementwill be demonstrated by the lack of injectivemap-
pingwith respect not just to themagnitude of the objects involved,
but to their sign: given a positive d′ value, we cannot say whether
the CI will look like function f or its negative image −f. Conversely
when taking the relation in the direction CI→sensitivity, given a
CI with say positive weight on the target signal, we cannot say
that the associated d′ value will be positive — it may be negative,
i.e. the observer may perform below chance, effectively reporting
the non-target stimulus as being the target stimulus. These ex-
treme scenariosmay appear puzzling to some readers, but they can
be implemented via relatively simple computational schemes.

2.3. Sensitivity→CI is not injective

We start with the intuitively more accessible demonstration:
radically different CI’s may correspond to identical d′ values. To
a limited extent, this result can be demonstrated with LN models
alone and without the aid of computer simulations. Consider an
input stimulus vector s with n entries (we chose n = 5 in Fig. 2A),
each defined by a normally distributed variable. In the non-target
stimulus, all entries have mean 0. In the target stimulus, all entries
have mean 0 except the kth entry having mean > 0 (this fact is
indicated by the upward-pointing arrow above panel A for which
k = 1). If we choose f to take value a > 0 at the kth entry and
value b at all other entries, the corresponding CI will be ∝ f and
d′ > 0 under the LN model. The same d′ value, however, will
be returned by replacing b with −b (black versus grey traces in
Fig. 2A). It is easy to see why this happens: all entries except k
consist of Gaussian noise with 0 mean; whether these entries are
weighted positively or negatively is immaterial to the final output
r , because noise fluctuates randomly in both directions. Thismeans
that signal detectability must remain unchanged (same d′), except
the CI will look radically different: consider that in Fig. 2A the black
CI is a lowpass filter, while the grey CI is a bandpass filter. And yet,
expected d′ is the same.

It is possible to devise infinitely many other examples with
similar characteristics. Fig. 2B shows an interesting variant, and
one for which we have encountered an approximate empirical
instantiation (Neri, 2014b). In this example, the target stimulus
contains a signal at the location indicated by the solid arrow, while
the non-target stimulus contains a signal of equal magnitude at
the location indicated by the dashed arrow. If we choose f so that
it is narrowly tuned around the target signal and broadly tuned
around the non-target signal (black trace in Fig. 2B), the associated
LN model will return a d′ value identical to that returned by
swapping tuning parameters between target and non-target, i.e. by
choosing f so that it is broadly tuned around the target signal and
narrowly tuned around the non-target signal (grey trace in Fig. 2B).
We encountered a similar scenario in experiments where target
and non-target signals consist of orthogonally oriented wavelets,
so that they correspond to signals occupying different locations
along the orientation axis of a stimulus representation projected
across orientation (Fig. 2C). An experimentalmanipulation that did
not involve SNR changes (upside-down image inversion) produced
broader tuning around the target signal and sharper tuning around
the non-target signal at the level of the retrieved CI (compare black
with grey traces in Fig. 2C), without any concomitant change in
sensitivity (Neri, 2011b, 2014b) (see inset).

The above examples are interesting, but not as extreme as
promised in the previous section: they donot show that a CI shaped
like f and one shaped like −f are associated with the same d′

value. This is not a minor point, because for example the scenario
in Fig. 2A only works if the kth entry into f (corresponding to
the target signal) retains the same sign when we switch between
conditions: we can invert sign for entries away from the signal-
to-be-detected without affecting d′, but we cannot invert sign for
weights assigned to the signal. Ifwe change sign, d′ will also change
sign. If we do not change sign, under the LN model this means the
CI will retain same sign for the kth entry. So we cannot have it both
ways (change sign for the kth entry into the CI without changing
sign for d′).

To rephrase this concept using simple expressions, the d′ as-
sociated with the LN model is ⟨f, t[1] − t[0]⟩/σN for unit-energy
(normalized) filter f and noise standard deviation σN (this term
incorporates both external and internal noise sources;more specif-
ically, it is the Pythagorean sum of the standard deviations as-
sociated with these two sources, Green & Swets, 1966). For the
example we considered, the non-target signal t[0] is 0 everywhere,
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Fig. 2. The black and grey templates in A–B return equal sensitivity for discriminating a target signal injected at the location indicated by the solid arrow as opposed to
the non-target signal indicated by the dashed arrow (in A the non-target signal is 0). C shows empirically measured aggregate CI’s approximating the scenario in B; inset
plots d′ values associated with black/grey CI’s (on x/y axes respectively) for individual observers (diagonal line indicates equality). Observers were asked to discriminate
between a target signal containing an orientedwavelet with orientation indicated by the solid arrow, and a non-target signal with orientation indicated by the dashed arrow.
Orientation noise was added to the stimulus in the form of oriented wavelets spanning the orientation axis and taking on random contrast values. The target orientation was
not fixed (e.g. vertical); it was instead defined by the local orientation content of a natural scene surrounding the wavelet. The black CI refers to trials on which the natural
scene was in upright configuration, while the grey CI refers to trials on which it was inverted upside-down. Readers are referred to the original publication (Neri, 2014b) for
further details.

Fig. 3. The grey simulated CI’s in B, D were generated by the circuit in A. The circuit
generates a decisional variable (output) via front-end convolution (top Mexican-
hat shaped functions), linear weighting by function inside large square, addition
of late additive internal noise (small square). Gain control was implemented by
squaring (grey square) and division (÷ symbol; please see supplied Matlab code
for details). Black CI’s were generated by a template matcher using the grey CI
as template, followed by additive internal noise. The output of this process is
similar (though not identical) to the output generated by the black portion of the
circuit in A. C, E plot corresponding sensitivity (d′) distributions (across multiple
simulations) for detecting the target signal injected at the location indicated by top
arrow and vertical dashed line. The main difference between B,C and D,E is that
in the latter case the weighting function in A (large square) was sign-inverted for
the grey simulation. Dashed trace in D was generated by the same circuit used to
generate the grey trace when challenged with stimulus SNR reduced to 1/4; the
corresponding d′ distribution is shown by open histogram in E. Thinner lines in B,
D show ±1 SD across 1k iterations of 10k trials each.

and the target signal t[1] is 0 everywhere except its kth entry.
The above expression for d′ reduces to f(k)t[1](k)/σN . For a given
experiment, the sign of the signal pulse is fixed (say t[1](k) > 0),
so that the sign of the expression for d′ is univocally determined
by the sign of f(k): if we invert the sign of the kth entry into f, the
sign of d′ must also change, i.e.we cannot demonstrate the stronger
result that f and −f are associated with the same d′ value using an
LN model.

To demonstrate the stronger result we resort to models outside
the LN family. In Fig. 3B, the black CIwas generated by an LNmodel,
while the grey CI was generated by a model involving a form of

divisive normalization (see diagram in Fig. 3A). More specifically,
the input stimuluswas first convolvedwith aGabor filter f: r = f∗s
(r is a vector because transduction of s through f is not effected via
inner product as in previous sections, but by convolution; f was
specified by a cosine carrier frequency of 2 cycles per whole range
of dimension of interest (doi) with 180◦ phase (negative peak) and
a standard deviation of Gaussian envelope equal to 11% of whole
range of doi). Each value in the convolution layer was then self-
normalized: r/(k+ r2), where k ∼ 11× the collective standard de-
viation of the values in r across all entries and iterations (i.e. kwas
fixed, not variable from trial to trial). Finally, the resulting vector
wasweighted by a sinusoidal weighting functionw to generate the
decision variable o = ⟨w, r⟩ (w was specified by a cosine function
of frequency 0.625 cycles per whole range of the doi peaking at
the centre value of the doi). This process was repeated for both
target and non-target stimuli to obtain o[1] and o[0] (o drives the
psychophysical response according to the usual rule based on the
sign of o[1]

− o[0]: if > 0 the system responds correctly, incorrectly
otherwise). The resulting CI (grey trace in Fig. 3B),whichwedenote
f∗, was then sign-inverted and used as linear filter for the LNmodel
that generated the black trace in Fig. 3B: the decision variable was
o = ⟨f∗, s⟩ + ϵ where ϵ is additive Gaussian internal noise (please
refer to Matlab code for specific values used in the simulations).

The two models detailed above generate sign-inverted CI’s
(Fig. 3B) and deliver matched d′ distributions (Fig. 3C). Fig. 3B–C
do not merely show that different CI’s may be associated with
equal sensitivity: the twoCI’s are not just ‘different’, rather they are
opposite across their entire domain. Other similar examples can be
constructed; we chose parameters and model structures (Fig. 3A)
that are reminiscent of typical components used in the computa-
tional literature (Carandini & Heeger, 2011; Heeger, Simoncelli, &
Movshon, 1996). These resultsmay seemcounter-intuitive to some
readers; in the next section we offer an intuitive explanation of
why the models behave in this way (see below).

2.4. CI→sensitivity is not injective

Using the model that generated the result in Fig. 3B–C, we
demonstrate the equally counter-intuitive result that two identical
CI’s may be associated with d′ values of opposite sign (this is
achieved by simply inverting the sign of the weighting function
w for the grey CI, leading to a pattern of results that is mirror
symmetric to that in Fig. 3B). The result is shown in Fig. 3D–E.
Again, it is hard to reconcile the grey CI with negative d′, because
the CI shows positive weight at the location occupied by the target
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signal (indicated by vertical dashed line): intuitively, this should
correspond to positive d′. And yet the simulations in Fig. 3D–E show
that it may correspond to positive or negative d′, undermining
typical qualitative thinking about CI’s and their relationship to
sensitivity (see below). The structure of this simulation is very
similar to the one adopted for Fig. 3B–C (see caption to Fig. 3; code
is included with this article).

To make this simulated scenario even more counter-intuitive
and opaque, the model that generates negative d′ values above
is not structurally incapable of positively detecting the target: it
can also generate positive d′ values, without any change of its
parameters. This can be simply achieved by reducing stimulus SNR
to a quarter of its previous value, which produces the d′ distribu-
tion shown by the black open histogram in Fig. 3E; however, the
corresponding CI does not change at all (dashed trace in Fig. 3D).
Therefore, by merely changing a stimulus property (SNR) that is
routinelymanipulated in the laboratory, the samemechanismmay
produce positive or negative sensitivity while returning identical
CI’s. The reason for this apparently herratic behaviour is simple:
divisive normalization occurs unit-by-unit in themodel (see code),
essentially reducing to a termof the form x/(1+x2). This function is
non-monotonic, giving rise to the switch from positive to negative
sensitivity. It is not at all unreasonable that a computation of
this kind may be operating in the human observer (Neri, 2015).
The non-monotonic nature of the normalized characteristic also
underlies the puzzling result in Fig. 3B: if the input is large enough
around the target region, it will inhibit rather than excite filter
outputs due to self-normalization; the best stimulus profile for
producing positive d′ (grey distribution in Fig. 3C) will then be
one where the input is smaller, rather than greater, near the target
region. Intuitively, this is the reason for the inverted grey CI shape
in Fig. 3B.

In the auditory literature, CI equivalents are usually called ‘per-
ceptual weights’ (Kortekaas, Buus, & Florentine, 2003; Oberfeld,
2008), and this term is also often used in the vision literature to
translate the significance of CI’s intomore intuitive language (Mur-
ray, 2011; Neri & Levi, 2006). It comes with the implied notion
that observers place variable weights on different portions of the
incoming stimulation, so that some stimulus parts are weighted
positively and others areweighted negatively (or ignoredwhen the
weight is 0). Fig. 3D–E demonstrate that this notion is problematic:
how can observers be placing positive weight on the stimulus
region containing the target signal (grey trace in Fig. 3D), and
yet consistently report the non-target signal as being the target
(grey distribution in Fig. 3E)? There is no sense in which the
notion of ‘perceptual weight’, however loosely one may define it,
can be applicable to the scenarios simulated in Fig. 3. This does
not necessarily invalidate previous literature that relied on this
notion: it is very likely that, for the large majority (if not all) of the
phenomena studied by prior work, the notion of perceptual weight
was at least approximately applicable. However the simulations in
Fig. 3 show that this neednot be the case and that,when it is not the
case, the notion of perceptual weight may be entirely inadequate.

We emphasize that, under the LN model, the above results
cannot be obtained. If we fix f for a LN model, the resulting CI will
be ∝ f. There is of course a range of d′ values that are compatible
with a given f due to the presence of internal noise: the larger the
internal noise source, the lower the associated d′. Varying internal
noise, however, can only modify the magnitude of d′, not its sign:
if d′ > 0 in the absence of internal noise, the introduction of
internal noise will make it smaller, but not <0. Again, this is a
direct consequence of the simple expression detailed above for
d′: when the intensity of the internal noise source is modified, σN
also changes its magnitude but remains positive by definition (it
is a standard deviation term), leaving the sign of the expression
unaltered. Needless to say, a sign change for d′ carriesmuch greater

conceptual significance than a mere amplitude change (Green &
Swets, 1966), as it indicates a qualitative transition from a target
detector (a system that selects the target signal over the non-target
signal) to a non-target detector (a system that selects the non-
target signal over the target signal). For this reason, the inability of
LN models to account for d′ values of opposite sign is particularly
relevant to our present discussion.

2.5. From linear to nonlinear descriptors

If we accept the notion that the CI is first and foremost a
descriptive statistic, it becomes natural to enhance it with other
related descriptors, just as we may choose to communicate the
structure of a dataset by reporting not only its mean but also its
spread (in the form of, say, variance). Prior work has extensively
demonstrated that second-order CI’s (obtained by computing co-
variance of classified noise samples in place of computing their
average Neri, 2004) can be informative about specific perceptual
mechanisms beyond the characterization provided by first-order
CI’s (Neri, 2010b). Rather than replicating relevant literature here,
we consider unpublished simulations that offer compelling ex-
amples of how inadequate first-order CI’s may be for recovering
system structure, in line with the above demonstrations of how
inadequate they are for predicting sensitivity. These examples also
demonstrate the power of full-scale (i.e. not limited to first-order)
CI’s as descriptive statistics.

For this demonstration we consider two separate noise probes,
labelled α and β in Fig. 4 (we offer a concrete example of how this
scenario may translate to an experimental setting in Fig. 5). As in
previous simulations, on every trial the system is challenged with
two stimuli, the target stimulus s[1] and the non-target stimulus
s[0], but each stimulus now consists of two components s[q]

α and
s[q]
β (q = 1 for target stimulus, q = 0 for non-target stimulus).
For these simulations, a signal-to-be-detected is only added to the
α probe for the target stimulus: s[q]

α = t[q] + n[q]
α where t[1] is zero

everywhere except themiddle entry set at 1.5× the noise standard
deviation and t[0] = 0 everywhere (as before, n is Gaussian noise).
For the β probe s[q]

β = n[q]
β (only noise) on both target (q = 1) and

non-target (q = 0) intervals.
The two probes target two different visual operators (e.g. pro-

cessing different regions of the visual field), each with a front-
end linear filter shaped like a Mexican-hat function defined across
some dimension of interest (e.g. orientation). We refer to the two
filter functions as fα and fβ (e.g. they could be tuning functions
characterizing orientation selectivity within two different regions
of the visual field), and to their outputs following template match-
ing with the stimulus as r [q]

α and r [q]
β : r [q]

α = ⟨s[q]
α , fα⟩ (if f is

an orientation tuning function, s would be a vector specifying
oriented energy within the stimulus at different orientations). The
expression for the β operator is identical except α is replaced by β .
Fig. 4A shows CI’s (first-order) for the case where the β operator is
left out of the decision variable, i.e. o[q]

= r [q]
α . In this case, there is

obviously nomeasurable tuning for the β probe (grey trace), while
the α probe (black trace) returns the front-end filter fα as expected
for a template matcher (Ahumada, 2002; Murray, 2011).

Fig. 4E shows the tuning functions returned by the circuit im-
mediately to the left of that panel: they are virtually identical to
those in Fig. 4A meaning that, on the basis of first-order statistics
alone, there is no way of distinguishing between a system solely
driven by α and one conforming to the circuit architecture on
the second row of Fig. 4 where β is also contributing to the final
response. In this circuit arrangement, output from the β operator
is added to the output from the α operator, but only after squaring:
the decision variable is o = rα + r2β . As expected, the β operator is
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Fig. 4. CI analysis is applied separately to noise samples independently delivered to two front-end Mexican-hat-shaped filters α and β , enclosed within circles in circuit
diagrams on the left. A shows first-order CI’s (black/grey for α/β) for a model where only output of α unit is used to generate decisional variable. B–C show second-order CI’s
for the two units separately, while D shows the cross-unit second-order CI. E–H show same for circuit on second row: squaring of β (parabola within square) then sum of α
and β; I–L for circuit on third row: static nonlinearity then sum; M–P for circuit on bottom row: sum then static nonlinearity. Thinner lines in A, E, I, M show ±1 SD across
simulations.

transparent to first-order statistics, in the sameway that complex-
cell-like receptive field structure is not exposed by the spike-
triggered average (Schwartz, Pillow, Rust, & Simoncelli, 2006); in
this sense, the outcome in Fig. 4E may seem trivial.

The above simulation becomes interesting when we carefully
consider some peculiarities of the two-probe design in a psy-
chophysical context. As a starting point, we consider that the anal-
ogy with complex-like operators and spike-triggered averaging
only applies for a noisy input with no added signal: if a target
signal is added to the β probe, it is no longer the case that the
resulting CI is flat as in Fig. 4E (Neri, 2010c; Tjan & Nandy, 2006).
In a realistic psychophysical context, there are several reasonswhy
adding a signal-to-be-detected is a near necessity (see Neri, 2010b
for relevant discussions of this issue). Therefore, if the stimulus
only consisted of one probe as in previous simulations, the result
in Fig. 4E could not be obtained because the probe would contain
a signal-to-be-detected. In the presence of two distinct probes,
however, it is entirely conceivable (and empirically observed as in
Fig. 5) that observers are asked to detect a signal in one probe only,
while their decision is also affected by stimulusmodulations in the
other probe, despite the latter being devoid of any task-relevant
information (i.e. containing pure noise with no added signal). If
observers behave like the circuit on the second row of Fig. 4, first-
order analysis of the associated CI’s would incorrectly lead to the
conclusion that the β probe is entirely ignored by their perceptual
system.

It is however possible to expose the contribution from the β

operator by extending the analysis to second-order CI’s (Neri, 2004,
2010b); two such objects, one for the α unit and one for the β

unit, are shown in Fig. 4B–C for the scenario where β is irrelevant
(top row), and in Fig. 4F–G for the corresponding interaction circuit
considered so far. Because under the latter scenario the β unit

interacts nonlinearly with the stimulus, the nonlinear descriptor
for β in Fig. 4G presents clear modulations that are absent from
the corresponding descriptor for the irrelevant probe (Fig. 4C).
By adopting nonlinear descriptors we can therefore discriminate
between the two scenarios outlined above.

Fig. 4I–P demonstrate that the two circuits on third and fourth
rows of Fig. 4 cannot be effectively discriminated using either
first-order (Fig. 4I, M) or unit-specific second-order descriptors
(Fig. 4J–K, N–O). In this case it becomes necessary to compute
an additional nonlinear descriptor that captures the interaction
between the two units, shown in Fig. 4L, P. Like the second-order
kernel, the cross-kernel comes from a simple covariance calcula-
tion, the only difference being that in the case of the second-order
kernel it is the covariance of input noise samples from one probe
(covariance between α and itself, or β and itself), while in the case
of the cross-kernel it is the covariance of noise samples from the α
probe with noise samples from the β probe (this also explains why
second-order kernels are symmetric, while cross-kernels are not).
In the circuit on the third row, the two units interact only after the
nonlinearity: the decisional variable is o = exp(r [α]) + exp(r [β]).
Because the nonlinearity (exp(.)) is applied separately to each unit
before their outputs are combined, the corresponding interaction
kernel (Fig. 4L) shows no sign of nonlinear processing. In the circuit
on the fourth row, the two units interact (via sum) before the
nonlinearity (the decisional variable being o = exp(r [α]

+ r [β]));
the interaction kernel (Fig. 4P) therefore retains the corresponding
nonlinear signature and allows discrimination between the two
models.

2.6. A realistic example of the double probe scenario

The two-probe scenario envisaged by the simulations in Fig. 4
has practical implications for realistic experimental settings. To
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Fig. 5. A–D plot the same descriptors as Fig. 4A–D with α = centre and β = surround for real experiments involving discrimination of a centre-surround stimulus (E).
Observers were asked to detect a brief luminance increase in the centre (see main text for details). F–G plot the two eigenvectors of B–C associated with the largest positive
eigenvalues; H plots singular vectors of D associatedwith the largest singular values. Shaded regions show±1 SD across simulations. Please refer to the original report (Neri,
2009) for further details on stimulus specification.

illustrate this point, we draw from our previous work (Neri, 2009)
with centre-surround displayswhere the luminance values of ‘cen-
tre’ and ‘surround’ regions (Fig. 5E)were independentlymodulated
by Gaussian noise every 20 ms over a temporal window of 260
ms (13 time points). An increment-to-be-detected was added to
the centre region within the middle 20 ms (between 120 and 140
ms), but not to the surround region. Centre and surround therefore
correspond to α and β in the above simulations. Fig. 5A–D plot
first- and second-order CI’s as in Fig. 4A–D, demonstrating that
significant modulations can be measured at the level of all CI’s.
It is possible to construct a relatively simple model that captures
all features of these measurements; for details, readers are re-
ferred to the original publication (Neri, 2009). We do not consider
those specific models here because they are not interesting for
the present discussion. However, we will consider one feature
of these measurements that is directly relevant to the additional
information that may be gained by considering second-order CI’s,
and that is not transparently available at the level of first-order CI’s
(see below).

There is a relevant issue pertaining to the visualization of
second-order CI’s. As we have discussed in previous sections, vi-
sualization is central to the argument put forward in this article,
because the emphasis here is on retaining the connectionwith raw
data structure while adopting relatively transparent summary de-
scriptors (such as CI’s). The issuewith second-order CI’s is that their
dimensionality is twice that of the input stimulus; when stimulus
probes are defined across two dimensions (as is often the case Neri
& Heeger, 2002; Neri, 2014a), the associated second-order CI’s are
four-dimensional and cannot be readily visualized.We can address
this issue using dimensionality reduction (Fournier et al., 2011;
Sandler & Marmarelis, 2015), an approach we demonstrate for the
centre-surround second-order CI’s. Their dimensionality (2D) is
halved via eigenvector decomposition; the resulting eigenvectors
(Fig. 5F–H) are therefore directly comparable to the first-order CI’s
(Fig. 5A). For illustrative purposes we have deliberately chosen a
2D→1D example so that readers can inspect both full and reduced
second-order kernels directly and evaluate the connection, how-
ever as noted above this approach is more productive for the case
of 4D second-order CI’s (Fournier et al., 2011).

An obvious difference between first-order CI’s (Fig. 5A) and
second-order eigenvectors/singular-vectors (Fig. 5F–H) is that the
former are primarily lowpass, while the latter are primarily band-
pass. As discussed in the original publication (Neri, 2009), it is

reasonable to interpret this discrepancy as reflecting an inability
of first-order CI’s to resolve the known bandpass nature of the
underlying front-end filter (Stromeyer & Martini, 2003). This lack
of resolving power is likely caused by temporal blurring (see Wat-
son, 1982 for an early example of how the filtering character-
istics of average descriptors from perturbation techniques may
be misinterpreted (Roufs & Blommaert, 1981) due to temporal
convolution). A bandpass temporal impulse response is not only
consistent with the structure of second-order CI’s, but can also be
successfully incorporated into a model that accounts for the em-
pirically measured characteristics of both first-order and second-
order CI’s (Neri, 2009). In this respect, dimensionality reduction
is therefore useful in exposing interesting features of second-
order CI’s (bandpass characteristics in this example) that are not
available from first-order CI’s.

It is relevant in this context that eigenvalue decomposition
maps to an intuitively graspable model of how eigenvectors com-
bine with the first-order CI to drive system output (Fournier
et al., 2014). If f is the first-order CI, f+n is the nth eigenvector
associatedwith a positive eigenvalue, and f−n is the nth eigenvector
associated with a negative eigenvalue, these descriptors can be
viewed as components of amodel where the final decision variable
is ⟨f, s⟩ +

∑N+

n=1⟨f
+
n , s⟩2 −

∑N−

n=1⟨f
−
n , s⟩2 where N+ is the num-

ber of statistically significant positive eigenvalues and N− is the
number of significant negative eigenvalues. In words, the eigen-
vectors (also termed principal dynamic modes in the engineering
literature Sandler &Marmarelis, 2015) derived from second-order
kernels of an identified system act as linear filters on the input
stimulus s just like the first-order kernel f, except their output is
squared before being added/subtracted to the final system output.
This formulation naturally incorporates common computational
tools such as the energy model (Adelson & Bergen, 1985), which
maps to a quadrature pair of eigenvectors. We highlight this con-
nection here because it provides a useful starting point for de-
veloping CI-driven computational models, however our favoured
approach remains one in which the CI’s (whether first- or second-
order) are treated as descriptive statistics, not least because
second-order psychophysical CI’s are biased estimates of second-
order system kernels in the Volterra framework (see Neri, 2010b
for detailed discussion of the associated distortions), which is the
framework that underlies the eigenvector interpretation outlined
above (Fournier et al., 2014; Sandler & Marmarelis, 2015).

There is a sense in which it is not surprising that more detailed
(higher-order) characterization of relevant statistical structure
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may achieve better discrimination among candidate models. The
simulations in Fig. 4 and the experimental results in Fig. 5 demon-
strate that this notion is applicable to plausible scenarios (Heeger
et al., 1996; Neri, 2009, 2015) (e.g. circuits in Fig. 4). We propose
that CI’s should be treated as descriptive statistics encompassing
as much statistical structure as can be reliably characterized with
the available data mass (Neri, 2010b).

2.7. Nonlinear can be tricky

We have already shown above (with simulations) that small
departures from the LN model make interpretation of first-order
CI’s uninformative at best (Fig. 4A, E), misleading at worst (Fig. 3).
From a theoretical standpoint, the most insidious consequence of
introducing computational elements beyond the scope of the LN
cascade is their potential interaction with the target signal (Neri,
2010b, c; Tjan & Nandy, 2006). When dealing with neurons, exper-
imenters get away with presenting only noise (neurons respond
anyhow), so that an unbiased stochastic perturbation is delivered
as input to the system (Ringach & Shapley, 2004). With human
participants, this approach is in general not applicable, because
humans must be asked to detect some signal if they are to press
buttons other than randomly. The experimenter may then choose
to present only noise anyhow under the assumption that partic-
ipants will look out for the specified signal (Gosselin & Schyns,
2003), however in the absence of an objective measure of per-
formance there is no certainty that they are actually performing
the assigned task: they may be relying on stimulus cues that are
largely disconnected from the specified signal, in fact they may
be adopting a processing strategy that would result in negative
sensitivity for the specified signal, yet produce CI’s that appear to
indicate otherwise (as in Fig. 3D–E).

To illustrate with real-world data some of the interpretational
issues that may arise in connection with signal-induced distor-
tions of CI estimates under highly nonlinear models, Fig. 6 applies
one such model to published measurements of orientation tuning
and their dependence on target orientation bandwidth (Taylor,
Bennett, & Sekuler, 2014). These experiments have reported that
some features of first-order CI’s vary as a function of specific
characteristics of the signal-to-be-detected, a result that has been
interpreted to reflect adjustable bandwidth of the underlying per-
ceptual mechanism (Taylor et al., 2014): when the target signal
spans a narrow orientation range, the corresponding CI presents
a sharp Mexican-hat profile centred on the target (black traces
in Fig. 6A–B); when the signal spans a much broader range, CI’s
become slightly broader and display signatures of orthogonal in-
hibition that are not present for the narrow range (grey traces in
Fig. 6A–B).

Our simulations can account for these effects (Fig. 6D) using
one model architecture (a variant of the uncertainty model, see
Fig. 6C) where no parameters are adjusted to accommodate signal
manipulations, suggesting that the observed change in CI struc-
ture may not in fact reflect any change in the underlying per-
ceptual mechanism. More specifically, the model initially extracts
orientation content within the stimulus via an energy detector
consisting of two Gabor wavelets in quadrature pair oriented at
angle θ : ⟨f[θ ]

even, s⟩2 + ⟨f[θ ]

odd, s⟩
2 (wavelets are specified by Gaussian

envelope of SD∼6% of image-width and carrier frequency = 6.4
cycles/image-width). This operation is repeated for θ sampling
the orientation axis at 8 distinct values, and it is performed in
image space (s is the 2D pixel image of the stimulus that was
projected on the monitor, not its power representation). The re-
sulting 8-element vector was then circularly convolved with 3-
element vector (−0.545, 1, −0.545), thus implementing inhibition
from nearby (±22.5◦) orientations (represented by top Mexican-
hat shaped functions in Fig. 6C). The resulting vector was further

Fig. 6. A–B show empirically derived CI’s for orientation tuning from two observers
(extracted from Fig. 6 in Taylor et al., 2014); black trace for detecting a target
spanning a 2-deg orientation energy centred on 0 (indicated by black rectangular
area in A), grey trace for target spanning the entire orientation axis (grey shaded
area). D show simulated CI’s from theMAXmodel in C (average across 100 iterations
of 2.5k trials each). Although the front-end filters (Mexican-hat-shaped functions
at the top) are displayed here with reference to the dimension of orientation, the
model operates on 2D stimulus images like those used with the human observers.
Following orientation-selective processing by the front-end layer, outputs from
orientation channels are weighted by the Gaussian function within the square
outline (greater weight around 0) before taking the maximum output (MAX) as
decision variable. Please refer to Taylor et al. (2014) for more details on the
experiments, and to the main text (as well as the supplied Matlab code) for more
details on the simulations.

weighted (multiplied element-by-element) by a narrow (SD= 15◦)
Gaussian envelope centred on the target orientation (0 on x axis
in Fig. 6A–B, D; this stage is represented by the square symbol in
Fig. 6C). Finally (but most importantly), the resulting 8-element
vector was subjected to a MAX operation (retain maximum value
as decisional variable; this stage is represented by the circle in
Fig. 6C). The associated CI’s are computed by first converting in-
dividual noise samples from image space to orientation energy
(by extracting power from their spectrum within a wedge region
sampling the orientation axis every 7◦ with wedge width of 22.5◦),
and then applying image classification to the resulting 1D traces
(this procedure is similar to the one adopted for computing human
CI’s in Fig. 6A–B, Taylor et al., 2014).

How can this model capture the retuning observed experimen-
tally (Fig. 6A–B), as demonstrated in Fig. 6D? The CI for a narrow
signal range (indicated by the black rectangular region in Fig. 6A) is
expected from previous analyses of the MAX model (Neri, 2010c;
Tjan & Nandy, 2006): the MAX operation selects the most active
channels, i.e. those in the vicinity of the signal (0 on x axis). These
channels produce greater outputs for two reasons: they are driven
by the signal (which is confined to a narrow region around 0), but
additionally they are favoured by the Gaussianweighting function.
The resulting CI (black trace in Fig. 6D) largely reflects the shape of
the inhibitory orientation kernel (Mexican-hat shaped function in
Fig. 6C).When the signal range is extended to the entire orientation
axis (indicated by the grey rectangular region in Fig. 6A), additional
filters are recruited by the MAX operation because their output
level is increased by the driving signal. This additional contribu-
tion from nearby filters, combined with the Gaussian weighting
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function and the MAX operation, results in a modified CI (grey
trace in Fig. 6D) that resembles the tuning characteristic measured
experimentally (Fig. 6A–B).

This interpretation does not call into question the broader con-
clusions of the original study (Taylor et al., 2014), however it
does expose some unexpected difficulties with interpreting CI’s as
transparently connectedwith the properties of the underlying sen-
sory system. The connection is often opaque, and is best avoided by
viewing these objects as alternative descriptions of data structure.
For the specific example considered in Fig. 6, it is not incorrect
to describe the measured objects (the CI’s) as displaying broader
tuning in one condition as opposed to another (as was done by the
original authors, Taylor et al., 2014): this is a consistent feature
of the data, and should be presented as such. The difficulty arises
when attempts are made at establishing a transparent connection
between this experimental feature and the underlying perceptual
mechanism: the connection is not transparent, as we demonstrate
in Fig. 6C–D by replicating the dynamic experimental feature using
a static perceptual mechanism. Related examples of similar sce-
narios exist in apparently distant areas of neuroscience research,
such as specific adaptive properties of fly spiking neurons that
may be mistaken as indicative of similarly adaptive characteristics
within the mechanism itself (Fairhall, Lewen, Bialek, & de Ruyter
Van Steveninck, 2001), when in fact those properties are exhibited
by a non-adaptive Reichardt detector (Borst, Flanagin, & Sompolin-
sky, 2005).

2.8. Final remarks

During the past two decades since the introduction of classifica-
tion images into vision (Ahumada, 1996), very substantial progress
has been made in understanding their relationship to different
theoretical and computational constructs (Murray, 2011; Neri,
2010b). This valuable body of knowledge is there to stay, largely
unchallenged by the considerations made here. At the same time,
an important lesson we have learnt from classification images is
that they are most useful when approached as rich descriptions
of data structure, rather than transparent images of underlying
perceptual mechanisms. We have offered a specific example of
how this approach may avoid potentially incorrect interpretations
of measured changes in CI structure (Taylor et al., 2014) (Fig. 6).
Below we discuss two relevant examples from the broader CI
literature where this approach has produced useful developments.

An example of interest is the refinedunderstanding of the often-
measured differences between target-present and target-absent
CI’s (Abbey & Eckstein, 2006; Ahumada et al., 1975; Neri & Heeger,
2002; Solomon, 2002). It was realized in the early stages of psy-
chophysical research on classified noise that those results present
significant challenges for the interpretation of CI’s, and that the ob-
served differences most likely reflect the operation of a MAX-like
operator connected with perceptual uncertainty (Ahumada et al.,
1975). However, the underlying theoretical framework was not
formalized untilmore recently, and in particularwith twodevelop-
ments in the 2000’s: an explicit analysis of the connection between
uncertaintymodels and CI’s on the one hand (Tjan &Nandy, 2006),
and a general formulation of the connection between nonlinear
operators and CI’s on the other hand (Neri, 2004).When combined
within a unified framework, these two developments lead to a
formal theory of the expected differences between target-present
and target-absent CI’s (Neri, 2010c).

Another pertinent example comes from research on energy
operators of the complex-cell-like family. It is well understood
that these operators may not display clear modulations at the
level of traditional CI measurements (we provide an example in
Fig. 4E, grey trace), and early studies of these phenomena at-
tempted to deal with the associated interpretational difficulties

via the introduction of novel analytical methods (Neri & Heeger,
2002; Solomon, 2002). The development of suchmethods has been
consistently pursued using a variety of different tools (e.g. Abbey
& Eckstein, 2006; Morgenstern & Elder, 2012; Neri, 2011a), equip-
ping uswithmore principledways of interpreting the rich datasets
returned by noise image classification.

Needless to say, dropping the LN model is not cost-free. If we
can assume the LN model, classification images will find the linear
template for us with minimal additional assumptions (Ahumada,
2002). Furthermore, we avoid the endless process of searching
for the ‘perfect’ model whereby whenever we device a suitable
model, we need to establish how ‘good’ it is in the sense of fit-
ting the data, a procedure that often involves noisy techniques
laden with assumptions of varying complexity (Claeskens & Hjort,
2008). We can establish lower and upper bounds on themaximum
predictability of trial-by-trial human responses achievable by the
theoretically optimal model (Neri & Levi, 2006), however those
bounds are relatively loose and noisiness in the human measure-
mentsmakes it difficult to be certain that the bound has been satu-
rated. Clearly, the domain of LNmodels iswithin our ‘comfort’ zone
in the sense that we understand their properties sufficiently well
that we can interpret CI’s without much difficulty (Murray, 2011).
Unfortunately, existing evidence indicates that LN models are just
not appropriate for modelling any visual operation, not even the
most elementary one (Neri, 2015). The view advocated in this
article is thatwe can turn the intricacies that arise from renouncing
the LN model to our advantage, for example in the identification
of specific components underlying nonlinear operators (Abbey &
Eckstein, 2006; Beard & Ahumada, 1998; Neri, 2010b, c, 2011a,
2015; Neri & Heeger, 2002; Solomon, 2002).

Classification images are here intended as objects computed us-
ing standard statistical descriptors, such asmean (Ahumada, 2002)
or covariance (Neri, 2004, 2010b): they should be approached
with the same attitude with which we approach those descriptors,
no more no less. From such perspective, it becomes immediately
clear that there is really no more straightforward and transparent
way of summarizing the statistics of a noise-based experiment that
are relevant to the observer: if we are to connect noise samples
with psychophysical responses, what simpler rule can be devised
than the standard combination rule (Ahumada, 2002)? There are
of course differences between CI’s and the statistical operators
used to compute them (e.g. the ‘variance’ component of a second-
order CI can be negative while variance cannot) and those must be
handled appropriately, but they do not undermine a transparent
connection with the raw data. It is this connection that is vital to
the communication and interpretation of empirical results. Further
elaboration using computational/theoretical tools is also impor-
tant (Murray, 2011; Neri, 2010b), but it must not come at the cost
of obscuring/misinterpreting data structure.
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