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Abstract
This article covers the basic principles of statistics in medicine. Topics
covered include types of data, descriptive statistics (mean, median,
mode, percentiles), the normal distribution, confidence intervals and
the standard error of the mean, hypothesis testing and the choice of
statistical tests, type I and II errors, contingency tables, correlation
and regression, and meta-analysis.
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Introduction

All clinicians should understand the correct use of research data,

and that statistics are the tools used to describe and analyse

numbers. The complete data set from a study may comprise

many thousands of observations, and it is not practical to give

the full results in a published paper. Descriptive statistics are

used to summarize this numerical information. We also use

statistics to infer properties about a wider population of subjects

beyond those actually studied, and this is called inferential sta-

tistics. Uncertainty, probability and error are crucial concepts for

understanding the limitations of statistics.
Types of data

The types of data obtained in a research project determine the

methods used to describe and analyse the data. There are three

main types.

� Categorical (nominal) data: each of the subjects in the

study is allocated to one of two or more mutually exclusive

categories, for example sex (male/female), blood group

(A, B, AB, O) or social class. The categories have no

ranking or numerical relationship to each other.

� Ordinal data (ordered categories or ranked data): each

of the subjects in the study is allocated to one of several

mutually exclusive categories, and these categories have

an intrinsic ranking or ordering. Examples would be grades

of oedema (mild/moderate/severe), or American Associa-

tion of Anaesthetists (ASA) scores (1, 2, 3, 4 or 5). The

categories may be numbered, but this numbering only

defines the ordering of the categories, and does not ‘scale’

the relative magnitude of one category to another. For

example, head-injured patients are allocated using the

Glasgow Coma Score (GCS) to one of thirteen possible

categories denoted by a whole number between 3 and 15.

A patient with a GCS of 4 is worse than a patient with a
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GCS of 8, but is not ‘twice as bad’, whereas a patient

weighing 80 kg is exactly twice as heavy as one weighing

40 kg. Misusing ordinal data by treating the numbers as if

real measurements had been made is a common mistake.

� Numerical data: this type of data describes actual nu-

merical properties of the subjects. The measurements can

be either discrete or continuously variable. Discrete nu-

merical data can only take certain values, usually integers

(e.g. number of children, hospital deaths per year);

continuously variable data can theoretically take any nu-

merical value, but usually occur within a certain range

(e.g. heart rate, weight).

Descriptive statistics

Descriptive statistics are required to summarize large data sets.

Categorical data are easily described by histograms or pie charts;

a visual illustration of the data clearly shows the frequency of the

categories (Figure 1).

Two essential properties describe ordinal or numerical data:

� the central location e where the bulk of the observations

lie

� the variability e how closely the observations are clus-

tered about the central location.

The central location of a series of observations is usually

described using the mean, median or mode (Table 1).

Misuse of the mean is a common error, which properly should

only be used with continuously variable numerical data. For

ordinal data the median or mode must be used (e.g. it is quite

wrong to quote a mean GCS of 7.5).

The variability can be described by the range, percentiles or

the standard deviation. The range gives the maximum and

minimum values of the observations and is useful if there is some

particular interest in the maximum or minimum response

(e.g. the lowest respiratory rate recorded would be of clinical

importance in patients given opiates). However, the range can

give a misleading impression of the variability if there are single

extreme results in the data.

A percentile is that observation which is greater than the

appropriate percentage of all the observations in the data set, so

the 10th percentile is the observation that is greater than 10% of

all the observations; the median is the 50th percentile; and the

90th percentile is the observation that is greater than 90% of the

observations. Commonly used percentiles are the interquartile

range (the 25th to 75th percentile) and the 2.5th to 97.5th

percentile (containing 95% of the observations). Percentiles can

be used for any type of data, but the standard deviation is only

applicable to data that are continuously variable and normally

distributed (see later). A common graphical way of summarizing

information is the ‘box and whisker’ plot (Figure 2).

Frequency distribution curves

A graph showing the probability of obtaining any particular

observation is called a frequency distribution (Figure 3).

The normal distribution is a specific frequency distribution

pattern that is common in biological data for which many sta-

tistical tests have been designed (e.g. t-test, analysis of variance).

The central location can be described by the mean (which is

the same as the mode and median), and the variability is
� 2017 Published by Elsevier Ltd.
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A pie chart and histogram, two ways of illustrating 
the frequency distribution of categorical or 
ordinal data
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Figure 1

Common measures of central location

Measure of

central location

Type of data Definition

Mean Continuously

variable

Sum of all observations/number

of observations

Median Ordinal and

numerical

The observation with half

the observations above and

half below, i.e. 50th percentile

Mode Ordinal and

numerical

The most commonly occurring

observation

Table 1

Box and whisker plot of heart rates after two 
different drugs 

The horizontal line shows the median, the ‘box’ shows percentiles, 
commonly the 2.5th to 97.5th, and the vertical line shows the range of 
the sample data. 
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Frequency distribution of heart rates

The probability of any given heart rate is shown by the histogram. The 
histogram can be replaced by a continuous curve as the intervals on the 
x-axis become smaller.
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described by the standard deviation. Multiples of the standard

deviation about the mean always contain the same proportion of

the observations (Figure 4).

Not all symmetrical frequency distributions are normal

(Figure 5).
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Skewed distributions are a common pattern in biological data,

when the frequency distribution curve is not symmetrical

(Figure 6).

The frequency of hospital stay after an operation is commonly

skewed (see Figure 6); most patients have similar lengths of stay,

but some have complications and stay much longer. This is an

example of positively skewed data; negatively skewed data is the

reverse pattern and is less common. The mean, median and

mode have different values if the data are skewed. If the single
� 2017 Published by Elsevier Ltd.
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Characteristics of a normal distribution 

Calculation of sample parameters

Sample mean =

Σ Σx (x – x) 2

n –1
n

Mean ± 1 SD 
Mean ± 2 SD 
Mean ± 3 SD 

Sample standard deviation (SD) =

Median–1 SD 1 SD SD 2DS 2–

67% of observations
95% of observations
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Figure 4

Kurtosis 

Not all symmetrical frequency distributions are normal; the curve may be 
flatter or more peaked than the normal distribution. a Normal distribution.
b and c Symmetrical distributions that have a broader (platykurtic) or more  
narrow (leptokurtic) distribution than the normal distribution. A bimodal 
distribution is an extreme example of a platykurtic distribution.
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Figure 5

Length of stay in hospital after surgery, an example 
of a positively skewed distribution 

The mode is 6 days, the median is 9 days and the mean is 10 days
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largest observation in the sample is increased, the mean and

range will increase, but the median and mode are unchanged; the

median or mode are generally better indicators of the central

location of a skewed distribution. If the standard deviation of a

sample is more than half the mean, then the data are probably

skewed.
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Skewed data can often be mathematically transformed to

conform to a normal distribution. Taking logarithms of a sample

that is positively skewed will usually produce a data set that is

approximately normally distributed, and then techniques

designed for the normal distribution can be used on the trans-

formed data. The alternative is to use statistical tests designed for

any data. If the data are transformed, care must be taken when

doing any reverse transformations back to the original units e

confidence intervals can be reverse transformed, but not the

standard deviation (the confidence limits will not be symmetrical

about the mean in skewed data). There are methods of testing

whether data conform to a normal distribution, for example the

ShapiroeWilk W test, and these ought to be done before using

statistics designed for the normal distribution. Statistical tech-

niques that use assumptions about the underlying distribution of

the data (nearly always assuming a normal distribution) are

called parametric statistics. Techniques to describe and analyse

data that make no assumptions about the underlying distribution

of the sample or population data are called non-parametric sta-

tistics, and can be used on any type of data. Most of these tests

are called rank sum tests: all the sample data are sorted in order

and assigned a ‘rank’, and then the significance test compares the

ranks of the data from different groups.

In practice, parametric statistics are reasonably reliable if used

for continuously variable data that are not normally distributed

provided the deviation is not too extreme. Parametric statistics

should never be used for ordinal data, but non-parametric sta-

tistics can be used for all data, including the normal distribution.

When the data are normally distributed, it is better to use the

parametric tests specifically designed for the normal distribution.

Inferential statistics

The subjects actually studied are a sample of a wider parent

population, and we wish to use the results of the sample to infer

the likely properties of the parent population. It is never known
� 2017 Published by Elsevier Ltd.
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Relationship of sample size and SEM

SEM = SD/√n, where SD is the standard deviation of the sample, 

Population distribution
Distribution of sample means of sample size 10
Distribution of sample means of sample size 100

Population mean

SEM is the standard error of the mean, n and is the number of subjects
in the sample. 

Figure 8
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how representative this sample is, so these inferences are always

made with some uncertainty. This uncertainty is measured by

probabilities, and these probabilities measure the degree of

confidence of our conclusions about the parent population.

The central limit theorem is the basis for much of inferential

statistics. This states that, if several samples are taken from a

population, the means of these samples are distributed normally

around the true population mean. The standard deviation of this

normal distribution of the sample means is called the standard

error of the mean (SEM). This is true even if the variable is not

distributed normally in the population, provided that the samples

are sufficiently large (Figure 7).

If the variable is distributed normally within the population

(unlike Figure 7, in which the population data are positively

skewed), then we can further obtain an estimate of the SEM from

the sample standard deviations (Figure 8).

Using the properties of the normal distribution, an estimate of

the true population mean can then be obtained from the sample

mean. We can be 95% confident that the true population mean

will lie within the range:

x� ð2� SEMÞ
where x is the sample mean. This range is called the 95% con-

fidence interval for the true population mean. If we had 100

different samples, we could obtain 100 different estimates of this

range; in about 95 of these, the true population mean would be

within this range, and in about five of these estimates the true

population mean would not lie within this range. In practice, we

usually have only one sample, and we do not know whether this

is one of the 5% of occasions when the true population mean is

outside the calculated range.

As n increases, the SEM decreases, and the 95% confidence

intervals for the true population mean are narrower. Intuitively,

large samples will be more representative of the whole popula-

tion, and the sample means of large samples will be more closely
Central limit theorem 

The mean of samples taken from the population is distributed normally 
about the population mean. SD, standard deviation; SEM. standard error of 
the mean.

Population mean

Frequency distribution of population

Distribution of means of sample size n from population.
The SD of this distribution is the SEM. As n increases,
the SEM decreases

Figure 7
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clustered about the true population mean than those of small

samples.

We have therefore used our sample and the central limit

theorem to infer properties about the unknown parent popula-

tion from which the sample was obtained. This introduces the

concepts of ‘assumptions’ (the assumptions that allow us to use

the central limit theorem), of ‘probabilities’ (the true population

mean is 95% probable to lie within the calculated range) and

‘inferential errors’ (we make conclusions based on probability

not certainty). Our application of statistics may be completely

correct, but our conclusions can still be wrong!
Hypothesis testing

One of the principal uses of statistics in medicine is to decide

whether the data from a clinical trial represent a real difference

between treatments or could our results have arisen by chance

and the treatments are actually indistinguishable. This is called

hypothesis testing. A simple example would be if a clinical trial

has been completed and the heart rates have been recorded in

two groups of patients treated with drugs A and B. Our samples

are drawn from two hypothetical populations: population A, all

patients (similar to those in the study given drug A) who are or

could be taking drug A, and population B, all patients (similar to

those in the study given drug B) who are or could be taking drug

B. We do not know how representative our samples are of these

two populations. All statistical tests calculate a probability or

confidence limits that the sample results could have been ob-

tained if populations A and B did not differ. The logical stages in

hypothesis testing are:

1 Form a null hypothesis. This states that the frequency

distribution of heart rates in population A is the same

as that in population B. The alternative hypothesis is
� 2017 Published by Elsevier Ltd.
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STATISTICS
that the populations A and B have different frequency

distributions.

2 Choose the appropriate statistical test. In this case, we have

continuously variable data that are usually normally

distributed, so we can use a t-test.

3 Obtain the p-value. The statistical test uses the actual heart

rates of our samples to calculate the probability (the p-value)

that we could have obtained our sample data if the null

hypothesis were true, that is if the samples had been ob-

tained randomly from a single population.

4 Accept or reject the null hypothesis. Conventionally, a

probability of 0.05 (5%) is chosen as the cut-off for the p-value

as sufficiently unlikely that we can reject the null hypothesis.

This value is called the level of statistical significance, and can

be chosen at a lower value (e.g. 0.01) if we wish to make our

conclusions less likely to be wrong. A value higher than 0.05 is

very rarely used. If the p-value is less than 0.05, we conclude

that drugs A and B have different effects on the heart rate. If

p >0.05, then there is a reasonable probability that we could

haveobtained these results becausepopulationsAandBare the

same, and we conclude that drug A and drug B do not have

different effects. Both of these conclusions may be wrong. This

pattern of reasoning is common to all clinical trials using

inferential statistical tests for hypothesis testing for differences

between groups in the study (Table 2).
Choice of statistical test

The choice of statistical test is determined by the type of data and

the number of groups; the most common statistical tests used in

medical research are shown in Table 3.
The logical steps in hypothesis testing, and possible
errors

Hypothesis testing Possible errors

Form the null hypothesis

Choose a statistical test Incorrect test chosen, e.g. one that is not

applicable to this type of data

Obtain a p-value

Reject the null

hypothesis if p <0.05

1 By definition, this decision will be

incorrect on 5% of occasions (a type I

error)

2 Poor study design. Our samples do

show a real difference, but this is

caused by bias; either because of poor

study design or by chance, our samples

differ in some important confounding

factor

Accept the null

hypothesis if p >0.05,

and conclude the

treatments do not have

different effects

There is a real difference in the treatments,

but our study has failed to demonstrate

this difference. This is a type II error, and is

much more common than a type I error.

The most common cause of a type II error

is insufficient numbers of patients in the

study

Table 2
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In some studies, each subject in one group is uniquely paired

with one in the other group(s). For example, if a variable is

measured in the same individual before and after an interven-

tion, then these two observations are ‘paired’. There are

appropriate statistical tests that should be used for this type of

data.
Multiple significance testing

If there are three or more groups in a study, it is tempting to test

all the possible paired combinations to determine the differences

between the various treatments, that is A versus B, B versus C,

A versus C, etc. If all these combinations are tested with a sta-

tistical significance level of 5%, the risk of finding spurious dif-

ferences by chance (a type I error) increases considerably. The

correct procedure is to use the appropriate statistical test for three

or more groups (Table 3). If we reject the null hypothesis, then

we conclude there are differences between the three or more

treatments used in the study, but we do not know which treat-

ments differ significantly.

There two ways around this problem. Special multiple com-

parison techniques (e.g. Scheffe F test, Duncan’s test) can be

used to determine the differences between the groups that limit

the overall risk of a type I error to 5%. Alternatively, a Bonfer-

roni technique can be used. A decision is made on how many

paired comparisons between groups are required, and each of the

chosen paired comparisons is tested with a lower level of sta-

tistical significance (usually 0.05 divided by the number of

comparisons). This works well if there fewer than five compar-

isons, but, above this, the technique becomes very conservative,

and differences between groups do not achieve statistical sig-

nificance even when the differences are large.
Contingency tables

Contingency tables are used to analyse categorical data. Usually,

the rows of the table are the different groups and the columns are

the different categories to which the patients are allocated. Each

cell in a table is the number of subjects from that group that have

been allocated to that category (Table 4).

Contingency tables can be used for any number of groups and

any number of observations about the groups; for example, a

study of the GCS of patients in 10 cities would be a 10 � 13

contingency table (10 cities, 13 possible GCS). There are prob-

lems of using large contingency tables. In the above example,

there may be only one city that is different and the other nine are

similar; the analysis may not detect this single difference. The

logical process of hypothesis testing is exactly as before, that is,

there is a null and alternative hypothesis and a p-value is ob-

tained from the sample data. The test commonly used for con-

tingency tables is called the chi-squared (c2) test. The number of

expected patients if the null hypothesis were true is calculated for

each cell and the difference between the observed and expected

in each cell is used to obtain the p-value.

There are a number of conditions that must be observed when

using contingency tables.

� The entries in each cell of the table must be the actual

number of patients, not percentages.

� The c2 test cannot be used if more than 20% of the cells

have an expected value of less than 5; Fisher’s exact test is

an alternative.
� 2017 Published by Elsevier Ltd.
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Choice of statistical test is determined by the type of data and the number of groups

Type of data Two groups More than two groups

Categorical data (e.g. blood group) Contingency tables Contingency tables

Ordinal data (e.g. Glasgow coma score) Unpaired: ManneWhitney test Unpaired: KruskalleWallis test

Paired: Wilcoxon rank sum test Paired: Friedman’s test

Continuously variable data, normally

distributed (e.g. weight)

Unpaired: t-test Unpaired: ANOVA

Paired: paired t-test Paired: paired ANOVA

Continuously variable data, not normally

distributed (e.g. duration of hospital stay)

As for ordinal data, or transform the data to a

normal distribution

As for ordinal data, or transform the data to a

normal distribution

Table 3

A 2 3 2 contingency table, comparing the incidence of
nausea and vomiting after two different analgesic drugs

Nausea and vomiting No nausea and vomiting

Morphine 14 9

Ketorolac 3 17

Table 4

STATISTICS
� There are particular problems in 2 � 2 tables with small

sample sizes. If the total in the table is less than 50, a

modification of the c2, called Yates’ continuity correction

should be used.
Repeated measurements

Many studies in anaesthesia involve making a series of obser-

vations with time on a single subject; for example, the heart rate

and blood pressure are measured in each patient for some time

after administering a drug. This violates one of the assumptions

of statistical tests that all the observations are independent of the

others. This is clearly not the case in this experiment; if the heart

rate is high, subsequent measurements are also more likely to be

high. This type of study can also generate enormous amounts of

data, and multiple statistical comparisons are often made

searching for statistical differences, increasing the risk of type I

errors.

There are two methods of analysing this type of data.

� The simpler method is to use a ‘summary measure’ for the

observations; the changes with time that have been

measured in each patient are summarized in a single value

used for the analysis. For example, if the systolic blood

pressure and heart rate after induction of anaesthesia have

been recorded, then examples of suitable summary mea-

sures for each patient could be: the lowest systolic arterial

pressure, the highest heart rate, the time to lowest blood

pressure or the mean heart rate. Which summary measures

should be chosen would depend on which clinical factors

were thought to be most important. Summary measures

can usually be analysed using simple methods.

� The alternative method is to use statistical tests designed

for these data, such as analysis of variance for repeated

measures.
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Correlation and regression

These techniques are used to measure the relationships between

two or more variables; for example, do they rise and fall together,

are they inversely related (i.e. one decreases while the other in-

creases), is the association linear or is there no relationship at all?

There are important differences between correlation and

regression:

� correlation measures the degree of relationship between

two independent variables

� regression mathematically expresses the dependence of

one dependent variable on another independent variable;

regression is used to predict the dependent variable from

the independent variable.

The common statistical techniques for correlation and

regression measure linear relationships, but non-linear relation-

ships can be expressed mathematically.

Linear regression is expressed by the equation of a straight line:

y¼mxþ c

where y is the dependent variable, x is the independent variable,

m is the slope of the line and c is the intercept on the y axis.

Statistical programmes will calculate m and c, the statistical

significance of this linear relationship, and confidence limits for

the true population values for m and c, provided certain as-

sumptions are met. These are:

� the possible values for y in the population for any given

value of x should be normally distributed

� the variability of this normal distribution for y should be

the same for all values of x

� the relationship is linear.

These assumptions can be tested mathematically, but it is

usually sufficient to visually check the scattergram for any

obvious deviations. If there is no scattergram, the reader cannot

check whether linear analysis is appropriate (Figure 9).

Correlation measures the degree of linear association of two

independent variables. A common mistake is to assume that, if

two variables are correlated, there must be a causal relationship.

It is important to inspect the scattergram before using computer

programs to obtain a correlation coefficient (Figure 10).

Correlation is most commonly expressed by the Pearson cor-

relation coefficient r. This number can vary between �1 and þ1.
� 2017 Published by Elsevier Ltd.
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Non-linear relationship 
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The ages and weights of 130 boys have been plotted and show a non-linear 
relationship because of the growth increase at puberty. A computer 
program would derive a highly statistically significant linear regression, 
although the relationship is better described as sigmoid. Accepting a linear 
regression equation just because it is statistically significant would miss 
important information in the data.

Figure 9

Errors in correlation 

A statistically significant linear correlation in the whole sample can be 
calculated, but the data actually have a bimodal pattern, and within each 
subgroup there is no correlation of the two variables.

Figure 10

The Bland–Altman technique for a method 
comparison study 

Invasive measurement of systolic pressure
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A new non-invasive method of measuring the arterial blood pressure (NIBP) 
is being calibrated using simultaneous intra-arterial measurements. The 
Bland–Altman plot has the systolic pressure measured invasively (IBP) as 
the x-axis and the difference between the two measurements (NIBP – IBP)
as the y-axis. The mean difference of (NIBP – IBP) is the bias, and the 95%
confidence interval for the difference is the precision or limits of agreement  
for the two methods.

Figure 11

STATISTICS
The þ or � signs convey whether the relationship is positive (i.e.

both variables increase together) or inverse (one increases as the

other decreases), respectively. The numerical magnitude of r

depends on the scatter of the points about the line of best fit. If all

the data points were to lie exactly on a straight line, then r ¼ þ1

or �1. As the amount of scatter about the line of best

fit increases, then r approaches 0. The value of r2 is the vari-

ability of one variable that is associated with change in the other

variable and is called the coefficient of determination. The value

of (1 � r2) is the amount of change in one of the variables that is

not associated with changes in the other variable and must be

associated with other factors.
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We can calculate confidence limits for the true population

value of r using either parametric or non-parametric methods.

The Pearson correlation coefficient can be used for data that are

continuously variable and approximately normally distributed in

the population. If this assumption is not correct then the alter-

native non-parametric method, the Spearman rank correlation

coefficient, should be used. The Spearman non-parametric

technique has two advantages: the strength of non-linear asso-

ciations can be measured and the association between ordered

categories can be measured.
Method comparison studies

Any new method of measurement needs to be compared with the

standard techniques. This is done by measuring the variable

using both the standard and new technique, and statistically

comparing the set of paired measurements. The correlation co-

efficient has been commonly used for this purpose, but this is

incorrect. If a new method is being compared with a standard

method, and there is a constant bias to the new method

compared with the standard, then the linear correlation coeffi-

cient will be þ1 because there is perfect correlation, but complete

disagreement between the two measurements. A better technique

is to use the BlandeAltman plot (Figure 11).
Multiple regression analysis

The dependent variable can be expressed mathematically as a

combination of any number of independent variables, either

linearly or non-linearly, and this technique is ‘multiple regres-

sion’. Logistic regression allows us to extend regression tech-

niques to both dependent or independent variables with

categorical states, for example smokers/non-smokers, survived/

dead.
� 2017 Published by Elsevier Ltd.
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Example of publication bias leading to an incorrect
conclusion from a meta-analysis.

Several studies in the 1980s demonstrated that intravenous mag-

nesium reduced mortality after acute myocardial infarction, and a

meta-analysis confirmed an important reduction in mortality. Sub-

sequently a large single-centre study showed no beneficial effect of

magnesium. A re-examination of the meta-analysis suggested a

strong publication bias. Small studies showing a positive beneficial

effect of magnesium had been published in journals, but small

studies which showed no effect had not been published, probably

because they had been rejected by the editors for insufficient power.

The meta-analysis, therefore, included a biased selection of all the

clinical trials of magnesium that were done and the conclusion was

incorrect. To help avoid this problem in the future, a central register

of all clinical trials has been suggested. This will enable reviewers to

locate all the trials on a subject, published or not.

Box 1

STATISTICS
It is common, especially in epidemiological studies, to find

many possible factors associated with the prevalence of a dis-

ease. Some of these are independent causative risks and some are

associated through other common factors. In the 1980s, smoking

was found to be strongly associated with cervical cancer and

proposed as a causative agent along with many other possibil-

ities, including parity and alcohol consumption. It is now

generally accepted that cervical cancer is commonly caused by a

sexually transmitted virus, and these other correlated factors are

more commonly present in women likely to acquire the virus.

Stepwise logistic regression is a technique that mathematically

includes those factors independently associated with the condi-

tion and removes from the equation those factors associated

through some other common feature.

Meta-analysis and systematic reviews

Meta-analysis is a statistical technique used to combine data

from several studies of the same topic to reach a single definitive

conclusion. There are varying mathematical techniques for

combining the data from different studies, and there is no single

‘correct’ method. Like all statistical methods, useful results are

obtained only if the data and methods are used correctly, and

there have been some serious errors (Box 1).

If all the studies used the same protocol, the data could be

combined with confidence. However, this is rarely the case, and

studies differ in selection of patients, treatment schemes, etc.

There are statistical techniques that can estimate the amount of

variability between the results of different studies that would

occur by chance, and if these are the only differences between

the studies, they are termed homogeneous. Any greater vari-

ability between the studies could be caused by important dif-

ferences between the methodologies of the studies, and is termed

heterogeneity. The amount of heterogeneity permitted in a reli-

able meta-analysis is not known.
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In a systematic review, the methods used to find all the

published papers on the topic, the criteria used to assess the

quality of the papers and the techniques for combining and

analysing the data are all decided in advance and reported in

detail in the published paper. Readers ought to be able to repeat

the methods used by the authors with the same results. The two

principal problems of conventional reviews are failure to find all

the papers published on a topic (especially those in a foreign

language) and bias by the reviewers. Some conventional reviews

and editorials can be little more than disguised polemics. A
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