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a b s t r a c t

Statistical inferencemethodology in dynamic factormodels (DFMs) is extended to themul-
tiple testing context based on a central limit theorem for empirical Fourier transforms of
multivariate time series. This theoretical result allows for employing a vector ofWald-type
test statistics which asymptotically follows a multivariate chi-square distribution under
the global null hypothesis when the observation horizon tends to infinity. Multiplicity-
adjusted asymptotic multiple test procedures based on Wald statistics are compared
with a model-based bootstrap procedure proposed in recent previous work. Monte Carlo
simulations demonstrate that both the asymptotic multiple chi-square test with an appro-
priate multiplicity adjustment and the bootstrap-based multiple test procedure keep the
family-wise error rate approximately at the predefined significance level. The estimation
algorithm as well as the implementation of the testing procedures is described in detail
and a real-life application is performed on European commodity data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

A dynamic factor model (DFM) is a multivariate time series model, where it is assumed that the observational process can

be decomposed into the sumof latent commonand idiosyncratic factors. The dynamic nature of the process is captured either
by autocorrelation in common or idiosyncratic components, or both, or the dynamic influence of the common components
on the observational process. The common factors are assumed to capture the significant part of the cross-correlation of
the original time series, whereas the dynamics pertaining only to the individual series are contained in the idiosyncratic
factors. Due to these characteristics, DFMs can be utilized as a dimension reduction tool as well as to provide meaningful
interpretations of the dynamics driving certain observational processes. Because of their interpretability and modeling
flexibility, DFMs have been widely employed in economics and finance; see, for example, Sargent and Sims (1977), Forni
et al. (2000) and Stock and Watson (2011).

The parameters of a DFM can be estimated both parametrically and non-parametrically in the time as well as in the
frequency domain. Classical time-domain estimation procedures employ maximum-likelihood-based methods such as
the expectation maximization (EM) algorithm, see, e.g., Watson and Engle (1983), or non-parametric methods based on
extracting principal components; see, for instance, Stock and Watson (2002). Recently, the frequency domain analog of the
EM-based method has been proposed by Fiorentini et al. (2016) and principal components-based procedures have been
extended to the frequency domain by Forni et al. (2000). An alternative parametric estimation method was suggested
by Geweke (1977), Geweke and Singleton (1981) and represents an adaptation of the method originally developed for
estimating the parameters of the covariance matrix of a static factor model by Lawley (1940) and Jöreskog (1967). Whereas

* Correspondence to: Institute for Statistics, University of Bremen, P. O. Box 330 440, 28344 Bremen, Germany.
E-mail address: dickhaus@uni-bremen.de (T. Dickhaus).

https://doi.org/10.1016/j.csda.2018.08.012
0167-9473/© 2018 Elsevier B.V. All rights reserved.



COMSTA: 6673

Please cite this article in press as: Dickhaus T., Sirotko-Sibirskaya N., Simultaneous statistical inference in dynamic factor models: Chi-square approxi-
mation and model-based bootstrap. Computational Statistics and Data Analysis (2018), https://doi.org/10.1016/j.csda.2018.08.012.

2 T. Dickhaus, N. Sirotko-Sibirskaya / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

methods based on the EM algorithm and principal components are traditionally used to estimate larger-scale DFMs, smaller-
scale DFMs can be efficiently estimated via direct optimization of the likelihood function. In the present paper we consider
small-scale DFMs, thus, we employ the method of direct optimization of the likelihood and provide a detailed description of
its step-by-step implementation.

With the introduction of DFMs an important question has been raised as of deciding on the presence of dynamics in the
commonaswell as in the idiosyncratic components. Correctmodel specification is especially crucialwhen the cross-sectional
dimension is small as, e.g., neglecting the dynamics in the idiosyncratic factors may lead to erroneousmodel selection and to
a subsequent misinterpretation of the model; cf. Maravall (1999) and Fiorentini et al. (2013). Testing procedures for model
specification in the DFM context include likelihood-ratios (LR) tests, see Geweke and Singleton (1981), Lagrange multiplier
(LM) test, seeWatson and Engle (1983), Fernández (1990) and Fiorentini et al. (2013), as well as Wald tests, see Geweke and
Singleton (1981). Fiorentini et al. (2013) offer an alternative LM testing approach to check the factors for autocorrelation.
However, theirmethod is initially developed for a single common factor case and has to be extended to themultiple common
factor context first.

Whereas these methods allow testing each single factor for autocorrelation separately, in the present work we address
the question of testing for autocorrelation of the factors simultaneously, thus, accounting for themultiplicity of the problem.
To this end we extend the Wald test for the parameters of the spectral density matrix of the exact stationary DFM as
in Geweke and Singleton (1981) to the multiple testing context. This extension is based on a multivariate central limit
theorem in sequence space for empirical Fourier transforms of the observational process, see Dickhaus and Pauly (2016).
Asymptotic normality of the Fourier transforms leads to asymptoticmultivariate chi-square distributions for vectors ofWald
statistics which can be used as test statistics in multiple test problems regarding the parameters of the spectral density of
the observational process. Moreover, we compare the performance of such asymptotic tests based on Wald statistics with
tests which are based on a bootstrap approximation of the finite-sample distribution of such vectors of test statistics, as
outlined inDickhaus and Pauly (2016). The idea is to contrast the generic approachwhich does not use the actual dependence
structure with the bootstrap procedure which is based on replicating the dependence structure present in the data.

Thus, we address two important open problems of Dickhaus and Pauly (2016), namely, (i) the implementation of the
proposed estimation and testing methodology, and (ii) the numerical comparison of the multivariate chi-square and the
bootstrap approximations of the null distribution of the vector of test statistics. From the point of view of data analysis, our
methodology can be used to address, among others, the following two problems.

Problem 1. Do the idiosyncratic factors have a non-trivial autocorrelation structure?

Problem 2. Do the common factors have a lagged influence on the observational process?

We will exemplify the proposed methodology by means of these two problems. The paper is organized as follows.
Section 2 summarizes the statistical methodology underlying our work. For technical details, we refer to (Dickhaus and
Pauly, 2016). We explain how vectors of Wald statistics arise in the context of DFMs when several linear hypotheses have to
be tested simultaneously, as it is the case for Problems 1 and 2. Furthermore, the two approximation methods for the null
distribution of such vectors (chi-square and bootstrap) are discussed. Section 3 describes the estimation of DFM parameters,
Section 4 presents numerical results from simulation studies, and Section 5 is devoted to the analysis of real data. We
conclude with a discussion in Section 6.

2. Statistical methodology

In this section, we summarize the statistical concepts underlying the work.

2.1. Dynamic factor model

We consider DFMs of the form

X(t) =

∞∑
s=−∞

Λ(s) f(t − s) + ε(t), 1 ≤ t ≤ T , (1)

where X = (X(t) : 1 ≤ t ≤ T ) denotes a p-dimensional, covariance-stationary stochastic process in discrete time
with mean zero, f(t) = (f1(t), . . . , fk(t))⊤ with k < p denotes a k-dimensional vector of so-called common factors and
ε(t) = (ε1(t), . . . , εp(t))⊤ denotes a p-dimensional vector of ‘‘specific’’ or ‘‘idiosyncratic’’ factors. We assume that the model
dimensions p and k are fixed, while the observation horizon (i.e., sample size) T tends to infinity. As mentioned before, the
underlying interpretation of (1) is that the dynamic behavior of the process X can be approximated by a lower-dimensional
‘‘latent’’ process f. The entry (i, j) of the matrix Λ(s) quantitatively reflects the influence of the jth common factor at lead or
lag s, respectively, on the ith component of X(t), where 1 ≤ i ≤ p and 1 ≤ j ≤ k. In particular, we consider predictable DFMs
with a finite number S of lags, which are of the form

X(t) =

S∑
s=0

Λ(s) f(t − s) + ε(t), 1 ≤ t ≤ T . (2)
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DFMs can be classified into ‘‘exact’’ and ‘‘approximate’’: in an exact DFM the idiosyncratic factors are assumed to be
cross-sectionally uncorrelated, whereas in an approximate DFM one allows for weak cross-sectional correlation between
idiosyncratic factors. In the present paper we restrict our attention to exact DFMs.

2.2. Multiple testing

The general setup of multiple testing theory assumes a statistical model (Ω,F , (Pϑ )ϑ∈Θ ) parametrized by ϑ ∈ Θ and is
concerned with testing a family H = (Hi : i ∈ I) of hypotheses regarding the parameter ϑ with corresponding alternatives
Ki = Θ \Hi, where I denotes an arbitrary index set. We identify hypotheses with subsets of the parameter space throughout
the paper. The intersection H0 =

⋂
i∈IHi is called the global hypothesis (in H). Let ϕ = (ϕi : i ∈ I) be a multiple test

procedure forH, meaning that each component ϕi, i ∈ I , is a (marginal) test for the test problem Hi versus Ki in the classical
sense.Moreover, let I0 ≡ I0(ϑ) ⊆ I denote the index set of true hypotheses inH and V (ϕ) the number of false rejections (type
I errors) of ϕ, i.e., V (ϕ) =

∑
i∈I0

ϕi. The classical multiple type I error measure in multiple hypothesis testing is the family-
wise error rate, FWER for short, and can (for a given ϑ ∈ Θ) be expressed as FWERϑ (ϕ) = Pϑ (V (ϕ) > 0). The multiple test
ϕ is said to (strongly) control the FWER at a pre-defined significance level α, if supϑ∈ΘFWERϑ (ϕ) ≤ α. A simple, but often
conservativemethod for FWER control is based on the union bound and is referred to as Bonferroni correction in themultiple
testing literature. Assuming that |I| = m, the Bonferroni correction carries out each individual test ϕi, i ∈ I , at (local) level
α/m. The ‘‘Bonferroni test’’ ϕ = (ϕi : i ∈ I) then controls the FWER. Improvements of the Bonferroni procedure, which take
dependencies among test statistics into account in order to define a multivariate multiple test, are major topics of modern
multiple testing theory; see, for example, Dickhaus (2014). Two possibilities, which will be pursued in the remainder, are
the exploitation of multivariate central limit theorems and the utilization of appropriate resampling schemes.

For the comparison of concurringmultiple tests (keeping the same type I error rate), also a notion of power is required. To
this end, denote by S(ϕ) =

∑
i∈I1

ϕi, where I1 = I \ I0, the (random) number of correctly rejected, false null hypotheses, and
let m1 = |I1| denote the total number of false null hypotheses in H. One popular definition of a multiple power of ϕ, which
we will use throughout the remainder, is then given by powerϑ (ϕ) = Eϑ [S(ϕ)/max(m1, 1)]; see Definition 1.4 of Dickhaus
(2014).

2.3. Likelihood-based inference in dynamic factor models

In order to maintain a self-contained presentation, let us briefly summarize some essential techniques and results from
previous literature.

Lemma 2.1 (Lemma 2 of Dickhaus and Pauly, 2016). Under a DFM, the spectral density matrix SX of the observable process X can
be decomposed as

SX(ω) = Λ̃(ω)Sf(ω)Λ̃(ω)′ + Sε(ω), −π ≤ ω ≤ π, (3)

where Sf and Sε are the spectral density matrices of the common and the idiosyncratic factors, respectively, Λ̃(ω) =
∑

∞

s=−∞
Λ(s)

exp(−iωs), and the prime stands for transposition and conjugation.

The identifiability conditions mentioned in Section 1 and further discussed in Section 3 can be plainly phrased by
postulating that the representation in (3) is unique (up to scaling). All further methods in this section rely on the assumption
of an identifiedmodel and on asymptotic considerations as T → ∞. To this end,we consider a scaled version of the empirical
(finite) Fourier transform of X. Evaluated at harmonic frequencies, it is given by

X̃(ωj) = (2πT )−1/2
T∑

t=1

X(t) exp(itωj), (4)

where ωj = 2π j/T , −T/2 < j ≤ ⌊T/2⌋. For asymptotic inference with respect to T , we recall from Dickhaus and Pauly
(2016) the following additional assumption.

Assumption 2.1. There exist B disjoint frequency bands Ω1, . . . , ΩB, such that SX can be assumed approximately constant
and different from zero within each of these bands. Let ω(b)

̸∈ {0, π} denote the center of the band Ωb, 1 ≤ b ≤ B. As
in Hannan (1973) and Geweke and Singleton (1981), we will denote by nb = nb(T ) a number of harmonic frequencies
(ωj,b)1≤j≤nb of the form 2π ju/T which are as near as possible to ω(b), 1 ≤ b ≤ B. In this, the integers ju, 1 ≤ u ≤ nb, in
ωj,b = 2π ju/T are chosen in successive order of closeness to the center.

Exploiting Assumption 2.1, the unknown model parameters in (3) are given by the d = 2pk+ k2 + p distinct parameters
in Λ̃(ω(b)), Sf(ω(b)) and Sε(ω(b)), for all 1 ≤ b ≤ B. We denote by ϑb, 1 ≤ b ≤ B, a vector of dimension d containing all
these parameters. The parameter vector ϑb in band Ωb can be estimated by maximizing the asymptotic (complex Gaussian)
likelihood function pertaining to the empirical Fourier transforms of X, see Section 3. The estimation algorithm described in
Section 3 delivers not only the numerical value of the maximum likelihood estimator (MLE) ϑ̂b, but additionally an estimate
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of the asymptotic covariance matrix of
√
nbϑ̂b. In view of standard results from likelihood theory (cf., e.g., Section 12.4

in Lehmann and Romano, 2005) concerning asymptotic normality of MLEs, it is assumed that
√
nb(ϑ̂b − ϑb)

D
→ Tb ∼ Nd(0, Vb), 1 ≤ b ≤ B, (5)

asmin(nb(T ), T ) → ∞, where themultivariate normal limit randomvectors Tb are stochastically independent for 1 ≤ b ≤ B,
and that V̂b is a consistent estimator of Vb. This is very helpful for testing linear (point) hypotheses. Such hypotheses are of
the formH : Cϑ = ξ with a contrastmatrix C ∈ Rr×Bd, ξ ∈ Rr andϑ consisting of all elements of all the vectorsϑb. In Geweke
and Singleton (1981) the usage of Wald statistics has been proposed in this context. The Wald statistic for testing H is given
by

W = N(C ϑ̂ − ξ)⊤(CV̂C⊤)+(C ϑ̂ − ξ), (6)

where N =
∑B

b=1nb, V̂ is the block matrix built up from the band-specific matrices NV̂b/nb, 1 ≤ b ≤ B, and A+ denotes the
Moore–Penrose pseudo inverse of a matrix A.

Theorem 2.1 (Theorem 2 of Dickhaus and Pauly, 2016). Under the above assumptions, W is asymptotically χ2-distributed with
rank(C) degrees of freedom under the null hypothesis H, provided that V is positive definite and N/nb ≤ K < ∞ for all 1 ≤ b ≤ B.

Returning to the two exemplary simultaneous statistical inference problems outlined in Problems 1 and 2, it has
been demonstrated by Dickhaus and Pauly (2016) that they can be formalized by families of linear hypotheses regarding
(components of) ϑ. Hence, for each individual hypothesis aWald statistic can be computed, the asymptotic null distribution
of which is chi-squared according to Theorem 2.1. Notice, however, that these Wald statistics are typically dependent,
leading to an involvedmultivariate chi-square distribution for the asymptotic joint null distribution of the vector of all these
statistics; see Dickhaus and Royen (2015) for an overview of such multivariate distributions and their usage in multiple
testing.

Lemma 2.2 (Problem 1 Revisited; Lemma 3 of Dickhaus and Pauly, 2016). In the notational framework of Section 2.2, Problem 1
can be formalized by setting m = p, and I = {1, . . . , p}. For each i ∈ I , consider the linear hypothesis Hi : CDunnett sεi = 0. The
contrast matrix CDunnett is the ‘‘multiple comparisons with a control’’ contrast matrix with B−1 rows and B columns, where in each
row j the first entry equals +1, the (j+ 1)th entry equals −1 and all other entries are equal to zero. The vector sεi ∈ RB consists of
the values of the spectral density matrix Sε corresponding to the ith noise component, evaluated at the B centers (ω(b)

: 1 ≤ b ≤ B)
of the chosen frequency bins. Denoting the subvector of ϑ̂ that corresponds to sεi by ŝεi , the ith Wald statistic is given by

Wi = (CDunnett ŝεi )
⊤

[
CDunnett V̂εiC

⊤

Dunnett

]+

(CDunnett ŝεi ),

where V̂εi = diag(σ̂ 2
εi
(ω(b)) : 1 ≤ b ≤ B). Then, under Hi, Wi asymptotically follows a χ2-distribution with B − 1 degrees of

freedom if the corresponding limit matrix Vεi is assumed to be positive definite. Considering the vector W = (W1, . . . ,Wp)⊤ of all
p Wald statistics corresponding to the p specific factors in the model, we finally have that W asymptotically follows a multivariate
chi-square distribution of the type considered in Section 5 of Dickhaus and Royen (2015) with B − 1 degrees of freedom in each
marginal under the intersection H0 of the p hypotheses H1, . . . ,Hp.

Lemma 2.3 (Problem 2 Revisited; Lemma 4 of Dickhaus and Pauly, 2016). As done inGeweke and Singleton (1981), we formalize
the null hypothesis that common factor j has a purely instantaneous effect on Xi, 1 ≤ j ≤ k, 1 ≤ i ≤ p, in the spectral domain by

Hij : |Λ̃ij|
2
is constant across the B frequency bands.

In an analogous manner to the considerations in Lemma 2.2, the contrast matrix CDunnett can be used as the basis to construct
a Wald statistic Wij. The vector W = (Wij : 1 ≤ i ≤ p, 1 ≤ j ≤ k) then asymptotically follows a multivariate chi-square
distribution with B − 1 degrees of freedom in each marginal under the global null hypothesis H0, in analogy to the situation in
Lemma 2.2.

Many other problems of practical relevance can be formalized analogously by making use of linear contrasts and thus,
our framework applies to them, too. Furthermore, the hypotheses of interest may also refer to different subsets of {1, . . . , B}.
In such a case, the marginal degrees of freedom for the test statistics are not balanced.

Remark 2.1.

(a) The dependency structure among the components of W is very involved. Hence, it is infeasible to utilize multivariate
chi-square quantiles as critical values for theWald statistics. However, the computer simulations reported byDickhaus
(2012) indicate that generic multiple test procedures for positively dependent test statistics perform well in case of
vectors of multivariate chi-square distributed test statistics. In particular, the multiplicity-adjustment by Hommel
(1988) is appropriate for FWER control in this context. Hence, such multiple tests will be considered in Sections 4 and
5. These tests do not utilize the actual strength of the dependencies, but the qualitative fact that positive dependency
among test statistics is present.
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(b) A different way to calibrate multiple tests based on vectors ofWald statistics as considered in Lemmas 2.2 and 2.3 is to
approximate the finite-sample null distribution ofW bymeans of appropriate resampling schemes. Resampling-based
multiple tests for FWER control have been worked out for instance by Westfall and Young (1993), Troendle (1995)
and Romano and Wolf (2005). In particular, it is well known that the convergence of Wald-type statistics to their
asymptotic χ2-distribution is rather slow, see Pauly et al. (2015) and Konietschke et al. (2015) and references therein.
To address this problem and to make use of the actual dependency structure of W in the multiple test procedure, a
model-based bootstrap approximation of the finite-sample distribution ofW has been derived by Dickhaus and Pauly
(2016); see Section 4 in their work for a detailed step-by-step description. The general idea behind the proposed
bootstrap procedure is very much in the spirit of a classical parametric bootstrap. However, the re-samples are
not generated from the (approximate) data distribution, but from the approximate (asymptotic) distribution of the
parameter estimators assuming the DFM structure; see (5).

3. Implementation

Maximum-likelihood-based algorithms for estimation of static factormodels have been developed in the 1940s by Lawley
(1940, 1941, 1942). However, these algorithms of gradient-descent type are either inefficient in terms of the number
of iterations needed for convergence, or do not converge at all even after a substantial number of iterations. In the
1960s Jöreskog and Lawley (1968) and Jöreskog (1967, 1969) suggested using a more efficient numerical procedure
developed by Fletcher and Powell (1963). The Fletcher and Powell algorithmbelongs to the class of quasi-Newton algorithms
and is based on updating not only the gradient, but also the inverse of the matrix of second derivatives, which speeds up the
algorithm and guarantees convergence in most of the cases. Moreover, the analytical expression for the matrix of second
derivatives is not necessary as the approximation to it is built successively in the process of iterations. Likelihood-based
estimation of dynamic factor models in the frequency domain, which is being employed in this paper, is performed by
adapting the modification of the Fletcher–Powell algorithm to complex-valued estimation, see Geweke (1977) and Geweke
and Singleton (1981).

The estimation steps of the DFM in the frequency domain can be summarized as follows: (i) model identification, (ii)
estimation of the number of disjoint frequency bands, and (iii) estimation of the free parameters in the model. These tasks
are addressed separately in the following subsections.

3.1. Model identification

The model identification issue in the DFM context is twofold. First, define

δ(p, k) = p(p + 1)/2 − [pk + k(k + 1)/2 + p],

where p(p+1)/2 is the number of distinct elements in SX and pk+k(k+1)/2+p is the number of parameters in unrestricted
Λ̃, Sf and Sε assuming that the parameters are in C. If the parameters are considered to be in R, their dimension is doubled
and the restrictions are imposed both on the real and imaginary parts. If δ(p, k) = 0, i.e., one has as many equations as
parameters, the model is identified uniquely. If δ(p, k) > 0, i.e., there are more equations than parameters, there are no
solutions. If, however, δ(p, k) < 0, i.e., there are fewer equations than parameters, there are infinitely many choices of Λ̃, Sf
and Sε , see Lawley and Maxwell (1971).

Second, there is rotational indeterminacy in factor loadings. To see this, consider any nonsingular k× kmatrixM(ω) and
let Λ∗(ω) = Λ̃(ω)M(ω) and S∗

f = M(ω)−1Sf(M(ω)−1)′. Then

Λ̃(ω)Sf(ω)Λ̃(ω)′ = Λ∗(ω)S∗

f (ω)Λ∗(ω)′.

Therefore, one needs to impose k2 restrictions corresponding to the number of elements inM(ω) to guarantee identification
of Λ̃ and Sf . In the absence of prior assumptions coming from the underlying scientific theory (e.g., economics or psychology,
where factor models are widely applied), one may apply the identification schemes suggested in the literature for the case
of orthogonal and oblique factors in order to resolve the rotational indeterminacy. When the factors are orthogonal, it is
common to assume Sf = I and Λ̃S−1

ε Λ̃′ to be diagonal, whereas in the case of oblique factors one assumes diag(Sf ) = I and
fixes at least k − 1 entries in each column of Λ̃ at zero with the pattern of zeros being such that it cannot be destroyed by
any non-singular transformation. Such patterns were first suggested by Thurstone (1947) and further developed by Reiersøl
(1950), Howe (1955), Anderson and Rubin (1956) and Lawley (1958) for static factor models. Their suggested schemes can
as well be adapted to the DFM set-up by requiring the identification restrictions to hold at each frequency ω, see Geweke
(1977), Geweke and Singleton (1981), and Heaton and Solo (2004). We will provide details on the identification schemes
used in the present work in Section 4.

3.2. Estimation of the number of disjoint frequency bands

Recall from Assumption 2.1 that we assume that B disjoint frequency bands exist such that SX can be assumed to be
approximately constant within each of these bands. Hence, prior to the estimation of the free parameters in the model one
has to identify this number B. Since the spectrum is symmetric about the origin, it is sufficient to consider only the interval
[0, π ).
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In order to perform the division of the harmonic frequencies into bands we use the methodology from Lavielle and
Ludeña (2000) and Reschenhofer (2008). This methodology assumes that the spectrum can be approximated by a piecewise
constant function. To this end, one needs to determine the locations and the number of ‘‘change-points’’, where we refer
to the endpoint of a frequency band as a change-point. If the number B − 1 of change-points is given, then their location is
determined in two steps: first, oneminimizes the so-called negativeWhittle log likelihood function to determine the optimal
height of a function for all possible locations of a change-point; second, one solves a combinatorial optimization problem in
order to determine the ‘‘optimal’’ locations of the change points. If the number of the change-points is not given, the latter
procedure is repeated for all the possible numbers and the optimal number is chosen by evaluating an information criterion
such as the Akaike information criterion (AIC) or the Bayesian (Schwarz) information criterion (BIC).

First we demonstrate how the spectrum can be approximated by a piecewise-constant function for the univariate process
and then we comment on how this procedure can be adapted to a multivariate case.

Let us assume that the piecewise constant function on the interval [0, π ) is defined by

g(ω; a1, . . . , aB, b1, . . . , bB−1) = a11[0,b1)(ω) + . . . + aB1[bB−1,π )(ω),

where b1, . . . , bB−1 are the change-points, resulting in B bands, namely, Ω1 = [0, b1), . . . , ΩB = [bB−1, π ). The parameters
a1, . . . , aB are the heights of the spectrum in each of these bands. Given any arbitrary configuration of change-points
b1, . . . , bB−1, the remaining parameters of this piecewise constant function, namely, a1, . . . , aB, are estimated byminimizing
the so-called negative Whittle log likelihood, given by

W ≡ W (a1, . . . , aB, b1, . . . , bB−1) =

∫
[0,π )

log g(ω; a1, . . ., aB, b1, . . ., bB−1) +

I(ω)
g(ω; a1, . . . , aB, b1, . . . , bB−1)

dω,

where I denotes the periodogram. The ‘‘optimal’’ configuration of the change-points themselves is then determined in a
combinatorial manner by minimizingW over the different possible configurations of b1, . . . , bB−1.

In order to adapt this strategy to the approximation of amultivariate spectrum, it is possible to substitute the periodogram
of the univariate process by the (spectral) norm of the periodogram of the multivariate process. Wewill pursue this strategy
in Sections 4 and 5.

3.3. Estimation of the free parameters in the model

The asymptotic likelihood function of the parameter vector ϑb in frequency band 1 ≤ b ≤ B based on observed data
X = x is given by

ℓb(ϑb, x) = π−p×nb |ivech(ϑb)|−nb exp

⎛⎝−

nb∑
j=1

x̃(ωj,b)′ ivech(ϑb)−1 x̃(ωj,b)

⎞⎠ ,

where ϑb = vech(SX(ω(b))), and ivech(ϑb) = SX(ω(b)), see Goodman (1963). Taking logarithms and dropping the argument
ω(b), we obtain equivalently

log ℓb(ϑb, x) = nb(−p logπ − log|SX| − tr (̂SS−1
X )), (7)

where

Ŝ = (nb)−1
nb∑
j=1

x̃(ωj,b)x̃(ωj,b)′

is the unconstrained spectral density matrix estimate in band b, 1 ≤ b ≤ B, see Geweke and Singleton (1981). Instead of
maximizing (7), it is convenient to (equivalently) minimize the function

fb(ϑb, x) = log|SX| + tr (̂SS−1
X ) − log|S| − p, (8)

as nb times the minimum value of fb(ϑb, x) provides the value of the likelihood ratio which can be used for testing purposes
later, see (Jöreskog, 1967). Making use of the decomposition of SX given in (3), maximization of fb(·, x) requires solving a
system of the following non-linear (in the parameters in ϑb) normal equations:

∂ fb(ϑb, x)
∂Λ̃

= 2S−1
X (SX − Ŝ)S−1

X Λ̃Sf = 0,

∂ fb(ϑb, x)
∂Sf

= 2Λ̃′S−1
X (SX − Ŝ)S−1

X Λ̃ = 0,

∂ fb(ϑb, x)
∂Sε

= diag(S−1
X (SX − Ŝ)S−1

X ) = 0.
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The latter optimization problem can be solved with the help of numeric solvers such as the nonlinear constrained
optimization function fmincon in Matlab with sequential quadratic programming method, sqp. Specifying only the gradient
analytically already leads to plausible estimation results. However, one has the possibility to add analytical expressions for
theHessian aswell. Otherwise, the algorithmprovides a positive definite quasi-Newton approximation of theHessian in each
iteration, which is constructed in Fletcher–Powell fashion. Since the parameter vector is complex-valued, in the estimation
procedure it is decast into real and imaginary parts, see Geweke and Singleton (1981). This is a local optimization problem,
hence, to ensure accurate results it is necessary to use appropriate initial estimates, see Jöreskog (1967).

An additional advantage of using this type of quasi-Newton algorithm is that the Hessian built up during the iterations
when inverted and multiplied by 2/nb gives an estimate of the variance–covariance matrix of the maximum likelihood
estimates of the free parameters, see Lawley and Maxwell (1971), Lockhart (1967) and Jöreskog (1967). This estimate is,
however, usually not precise, so it is advisable to recompute the second-order derivative matrix at the minimum and invert
it to obtain more precise estimates.

4. Simulation studies

To address Problems 1 and 2 stated in Section 1, we first consider simulation scenarios with dynamics in either of the
factors and then dynamics in both type of factors. First, we introduce a ‘‘benchmark’’ static factor model, Model 1, which is
defined by

X(t) = Λ(0) f(t) + ε(t), 1 ≤ t ≤ T , (9)

where Λ ≡ Λ(0) = (λi,j)1≤i≤p,1≤j≤k
i.i.d.
∼ N (0, 1), f(t) ∼ Nk(0, Ik) and ε(t) ∼ Np(0, Ip). This means, we consider the case

that S = 0 in (2). Next we introduce dynamics in the model by considering first the dynamics solely in the idiosyncratic
factors, Model 2, and then dynamics solely in the common factors, Model 3. Factor dynamics are modeled and simulated as
vector-autoregressive processes (VARs) defined as follows:

f(t) = Ψ1f(t − 1) + · · · + Ψqf f(t − qf) + ζ(t), ζ(t) ∼ Nk(0, Σζ ),
ε(t) = Φ1ε(t − 1) + · · · + Φqεε(t − qε) + u(t), u(t) ∼ Np(0, Σu),

where Ψi
k×k

and Φi
p×p

= diag are autoregressive coefficient matrices of common and idiosyncratic factors, respectively. Finally,

in Model 4 we allow both common and idiosyncratic factors to be autocorrelated. The coefficients for all VAR processes
are chosen in such a way that the roots of the characteristic polynomials are inside the unit circle, i.e., the processes are
stationary which is required by model assumptions.

To solve the rotational indeterminacy it is necessary to adopt the following identification schemes for the orthogonal
factors: Sf = I and Λ̃SεΛ̃

′
= diag , and for the oblique factors: diag(Sf ) = 1 and Λ̃ = (Λ̃′

1, Λ̃′

2)
′, where Λ̃1 is a k× k diagonal

matrix with positive elements on the diagonal.
Moreover,we impose over-identifying restrictions by setting certain entries in the factor loadingmatricesΛ(s), 0 ≤ s ≤ S,

to zero as follows

Λ(s)5×2 =

⎡⎢⎢⎢⎣
× 0
× 0
× 0
0 ×

0 ×

⎤⎥⎥⎥⎦ , Λ(s)10×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0
× 0 0
× 0 0
0 × 0
0 × 0
0 × 0
0 0 ×

0 0 ×

0 0 ×

0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where × corresponds to a free parameter.
Here, we present Monte Carlo simulation results referring to Problems 1 and 2 under the four aforementioned models.

The estimation results are presented in Figs. 1–4 (corresponding toModels 1 to 4), whereas the testing results are illustrated
in Figs. 5–8 (Models 1 to 4), and summarized in Tables 1–4 (Models 1 to 4).

To illustrate the theoretical assumptions as well as the accuracy of the estimation results the left panels of Figs. 1–4
display the theoretical spectra of the common and idiosyncratic factors (dashed line and dotted line, respectively), as well as
the overall theoretical spectrum associated with each model (solid line). The right panels of Figs. 1–4 present the estimation
accuracy with the solid red line denoting the average norm of the theoretical spectrum and the dashed line denoting the
average norm of the estimated spectrum. The solid black line in the right panel of Figs. 1–4 corresponds to the theoretical
overall spectrum, and it is the same as in the corresponding left panel. The estimation results are averaged over 10,000
Monte Carlo simulation runs, therefore, the lines corresponding to the average norm of the theoretical spectrum and the
average norm of the estimated spectrum in the right panels of Figs. 1–4 may appear indistinguishable. From these graphical
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Fig. 1. Estimation results under Model 1. Left: The norms of theoretical spectra of common factors (dashed line), idiosyncratic factors (dotted line), and
overall spectrum (solid line). Right: Estimation results for 10,000 simulation runs. Norm of the theoretical spectrum (solid black line), average norm of
theoretical spectrum (solid red line), and average norm of estimated spectrum (dashed line). Note: The lines almost coincide in the right-hand side graph.
Model parameters: p = 5, k = 2, T = 1000. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Estimation results under Model 2. Left: The norms of theoretical spectra of common factors (dashed line), idiosyncratic factors (dotted line), and
overall spectrum (solid line). Right: Estimation results for 10,000 simulation runs. Norm of the theoretical spectrum (solid line (smooth)), average norm of
theoretical spectrum (solid line (piecewise constant)), and average norm of estimated spectrum (dashed line). Model parameters: p = 5, k = 2, T = 1000.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Estimation results under Model 3. Left: The norms of theoretical spectra of common factors (dashed line), idiosyncratic factors (dotted line), and
overall spectrum (solid line). Right: Estimation results for 10,000 simulation runs. Norm of the theoretical spectrum (solid line (smooth)), average norm of
theoretical spectrum (solid line (piecewise constant)), and average norm of estimated spectrum (dashed line). Model parameters: p = 5, k = 2, T = 1000.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Estimation results under Model 4. Left: The norms of theoretical spectra of common factors (dashed line), idiosyncratic factors (dotted line), and
overall spectrum (solid line). Right: Estimation results for 10,000 simulation runs. Norm of the theoretical spectrum (solid line (smooth)), average norm of
theoretical spectrum (solid line (piecewise constant)) and average norm of estimated spectrum (dashed line). Model parameters: p = 5, k = 2, T = 1000.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Empirical FWERs for Problems 1 and 2 based on unadjusted and adjusted p-values under Model 1 with no autocorrelation in common and idiosyncratic
factors based on 10,000 Monte-Carlo repetitions and 100 bootstrap repetitions for varying p, k and T .

Unadjusted p-values (Hommel-) Adjusted p-values Bootstrap

Problem 1 Problem 2 Problem 1 Problem 2 Problem 1 Problem 2
FWER FWER FWER FWER FWER FWER

p = 5, k = 2
T = 1000
α = 0.05 0.2533 0.2333 0.1265 0.0744 0.1279 0.0811
α = 0.10 0.3538 0.3932 0.1702 0.1234 0.1719 0.1281
α = 0.15 0.4339 0.5262 0.2040 0.1629 0.2050 0.1725
T = 2000
α = 0.05 0.2320 0.2264 0.1102 0.0695 0.1100 0.0725
α = 0.10 0.3316 0.3867 0.1501 0.1143 0.1527 0.1203
α = 0.15 0.4203 0.5171 0.1843 0.1575 0.1863 0.1659

p = 10, k = 3
T = 2000
α = 0.05 0.1206 0.1444 0.0404 0.0904 0.0410 0.0921
α = 0.10 0.1998 0.2530 0.0638 0.1027 0.0673 0.1067
α = 0.15 0.2621 0.3469 0.0858 0.1173 0.0919 0.1217

Table 2
Empirical powers for Problem 1 and empirical FWERs for Problem 2 based on unadjusted and adjusted p-values under Model 2 with no autocorrelation
in common and autocorrelation in idiosyncratic factors based on 10,000 Monte-Carlo repetitions and 100 bootstrap repetitions for varying p, k and T .

Unadjusted p-values (Hommel-) Adjusted p-values Bootstrap

Problem 1 Problem 2 Problem 1 Problem 2 Problem 1 Problem 2
Power FWER Power FWER Power FWER

p = 5, k = 2
T = 1000
α = 0.05 0.7038 0.2986 0.6285 0.1291 0.5589 0.1317
α = 0.10 0.7808 0.4865 0.7224 0.1753 0.6132 0.1788
α = 0.15 0.8219 0.6281 0.7823 0.2193 0.6548 0.2262
T = 2000
α = 0.05 0.8484 0.3686 0.8389 0.1288 0.7578 0.1330
α = 0.10 0.8969 0.5527 0.8910 0.2027 0.7979 0.2046
α = 0.15 0.9243 0.6839 0.9198 0.2715 0.8220 0.2765

p = 10, k = 3
T = 2000
α = 0.05 0.9979 0.2473 0.9978 0.1255 0.9969 0.1295
α = 0.10 0.9984 0.3711 0.9984 0.1596 0.9973 0.1636
α = 0.15 0.9985 0.5040 0.9985 0.1891 0.9977 0.1927

representations of the estimation results we can conclude that the estimation methodology provides fairly good estimates 1

of the models. 2
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Table 3
Empirical FWERs for Problem 1 and empirical powers for Problem 2 based on unadjusted and adjusted p-values under Model 3 with autocorrelation in
common and no autocorrelation in idiosyncratic factors based on 10,000 Monte-Carlo repetitions and 100 bootstrap repetitions for varying p, k and T .

Unadjusted p-values (Hommel-) Adjusted p-values Bootstrap

Problem 1 Problem 2 Problem 1 Problem 2 Problem 1 Problem 2
FWER Power FWER Power FWER Power

p = 5, k = 2
T = 1000
α = 0.05 0.3118 0.4517 0.1556 0.4204 0.1822 0.4299
α = 0.10 0.4570 0.4898 0.2056 0.4400 0.2497 0.4505
α = 0.15 0.5711 0.5194 0.2488 0.4576 0.3090 0.4680
T = 2000
α = 0.05 0.3694 0.5110 0.1460 0.4692 0.1821 0.4762
α = 0.10 0.5504 0.5544 0.2177 0.4989 0.2805 0.5053
α = 0.15 0.6786 0.5878 0.2795 0.5225 0.3616 0.5273

p = 10, k = 3
T = 2000
α = 0.05 0.3702 0.8812 0.2433 0.8464 0.2514 0.8156
α = 0.10 0.4603 0.9254 0.2879 0.9056 0.2765 0.8954
α = 0.15 0.5230 0.9465 0.3267 0.9337 0.3178 0.9228

Table 4
Empirical powers for Problems 1 and 2 based on unadjusted and adjusted p-values under Model 4 with autocorrelation in common and autocorrelation
idiosyncratic factors based on 10,000 Monte-Carlo repetitions and 100 bootstrap repetitions for varying p, k and T .

Unadjusted p-values (Hommel-) Adjusted p-values Bootstrap

Problem 1 Problem 2 Problem 1 Problem 2 Problem 1 Problem 2
Power Power Power Power Power Power

p = 5, k = 2
T = 1000
α = 0.05 0.8137 0.4467 0.7562 0.4104 0.6488 0.4194
α = 0.10 0.9011 0.4936 0.8708 0.4343 0.7425 0.4434
α = 0.15 0.9350 0.5337 0.9199 0.4572 0.8046 0.4637
T = 2000
α = 0.05 0.9745 0.5008 0.9734 0.4571 0.9264 0.4623
α = 0.10 0.9835 0.5539 0.9832 0.4898 0.9607 0.4911
α = 0.15 0.9875 0.5961 0.9873 0.5207 0.9724 0.5154

p = 10, k = 3
T = 2000
α = 0.05 0.9841 0.7917 0.9839 0.7359 0.9751 0.7234
α = 0.10 0.9890 0.8415 0.9886 0.7915 0.9857 0.7845
α = 0.15 0.9918 0.8725 0.9917 0.8269 0.9889 0.8167

The testing results are presented two-fold: First, we compute empirical family-wise error rates and empirical powers
based on unadjusted as well as adjusted p-values in the following manner.

F̂WER =
1
MC

MC∑
i=1

1{∃j ∈ I0 : pi,j < α},

P̂ower =
1
MC

MC∑
i=1

1
m1

∑
j∈I1

1{pi,j < α},

whereMC denotes the number of Monte Carlo simulation runs, α denotes the target FWER level, and pi,j denotes the p-value
for the jth (marginal) test problem in the ith simulation run. Second, we illustrate our testing results by histograms of the
minimum adjusted p-values.

As outlined before we consider two competing techniques, namely, asymptotic tests based on Lemmas 2.2 and 2.3 and
bootstrap-based tests, and we compare themwith respect to their type I and type II error behavior. For the asymptotic tests
based on Lemmas 2.2 and 2.3, we compute marginal unadjusted p-values based on the univariate chi-square approximation
of each Wald test statistic, as well as multiplicity-adjusted p-values according to Hommel (1988); cf Remark 2.1. The
empirical family-wise error rates and powers of the considered tests, based on the unadjusted as well as on adjusted p-
values, are presented in Tables 1–4. Notice that all null hypotheses are true in Model 1 (Problems 1 and 2). In Model 2, all
null hypotheses are false for Problem1, and all null hypotheses are true for Problem2. InModel 3, all null hypotheses are true
for Problem 1, and all null hypotheses are false for Problem 2. Finally, all null hypotheses are false in Model 4 (Problems 1
and 2). Besides themodel type we vary themodel dimensions p, k, and T to judge the sensitivity of the suggested procedures
with respect to these parameters. As can be seen from Table 1 presenting the empirical FWERs for Problems 1 and 2 under
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Fig. 5. Histograms of minimal (Hommel-) adjusted p-values under Model 1. Left: Problem 1 on idiosyncratic factors, right: Problem 2 on factor loadings.
Model parameters: p = 5, k = 2, T = 1000.

Fig. 6. Histograms of minimal (Hommel-) adjusted p-values under Model 2. Left: Problem 1 on idiosyncratic factors, right: Problem 2 on factor loadings.
Model parameters: p = 5, k = 2, T = 1000.

Model 1, the empirical FWER decreaseswhen the observational horizon increases (compare T = 1000 versus T = 2000), and
it generally increases when the dimensionality of the model increases, see the results for p = 5, k = 2 versus p = 10, k = 3.
In Models 2 to 4, where common and/or idiosyncratic factors are autocorrelated, we observe an increase in empirical power
when increasing the time horizon T , as expected. The behavior of the empirical FWER with increasing T is less pronounced
under thesemodels. Finally, the results for Models 1 to 4 demonstrate that themultiplicity adjustment is necessary, because
the empirical FWERs based on the unadjusted p-values substantially exceed the significance level α.

In Figs. 5–8 we present the histograms of minimum (Hommel-) adjusted p-values for Problems 1 and 2. Under the
respective global hypothesis, these p-values should asymptotically (T → ∞) follow a uniform distribution on [0, 1], while
their distribution should be concentrated around zero in the presence of false hypotheses. This theoretical statement is
illustrated in the results of the Monte Carlo simulations, as can be seen from the shape of the histograms in the figures.
For example, in Model 2 (corresponding to Fig. 6) the idiosyncratic factors are assumed to be autocorrelated, whereas the
common factors follow a white noise process. This means that the global null hypothesis for Problem 1 is false under Model
2, whereas the global null hypothesis for Problem 2 is true under Model 2. The left panel of Fig. 6 presents the histogram of
the minimal adjusted p-values for Problem 1, with its mass being concentrated around zero, while the right panel of Fig. 6
presents the histogram of the minimal adjusted p-values for Problem 2, with the minimal p-values being approximately
uniformly distributed. The other three figures (corresponding to the other three models) can be interpreted analogously.

In summary, our Monte Carlo simulations demonstrate that both the asymptotic multiple chi-square test with an
appropriate multiplicity adjustment as well as the bootstrap-based multiple testing procedures keep the family-wise error
rate approximately at the predefined significance level α, especially if the DFM has a simple structure as under our Model 1,
and if α is not too small such that non-extreme tails of the null distribution have to be approximated. Also, their estimated
powers are rather similar. Bootstrap-based testing requires a separate implementation. However, it is in our context based on
simulating fromamultivariate normal distribution,which can be performed rather efficiently. Thismakes its use comparable
to the (Hommel-) adjusted multiple testing in terms of computational complexity. Thus, we conclude that the two multiple
tests can be used interchangeably.
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Fig. 7. Histograms of minimal (Hommel-) adjusted p-values under Model 3. Left: Problem 1 on idiosyncratic factors, right: Problem 2 on factor loadings.
Model parameters: p = 5, k = 2, T = 1000.

Fig. 8. Histograms of minimal (Hommel-) adjusted p-values under Model 4. Left: Problem 1 on idiosyncratic factors, right: Problem 2 on factor loadings.
Model parameters: p = 5, k = 2, T = 1000.

We also performed a sensitivity analysis with respect to non-Gaussian distributions and simulated observations from
Student’s t-distribution with various degrees of freedom. With minor deviations from normality, i.e., in the case of t-
distributions with degrees of freedom larger than 10, the testing results did not deviate strongly from the simulation
results with observations generated from the normal distribution. However, larger deviations from Gaussianity such as t-
distributions with 5 or 3 degrees of freedom lead to a FWER notably larger than the target level. It is possible to reduce it by
making the sample sizes larger, but not substantially. Therefore, we do not recommend to use the proposed method if the
data are clearly heavy-tailed. In the case that the model-based bootstrap is employed, one may incorporate the information
of heavy-tailedness into the resampling scheme, by changing the probability model from which the re-samples are drawn.
Similar work in this direction has been done by Creal et al. (2013), Harvey (2013) and Cortes et al. (2017). Extensions of
the bootstrap methodology to the t-distribution is straightforward: estimate the degrees of the hypothesized t-distribution
from the data and bootstrap from the obtained distribution. A more thorough theoretical analysis of the inference methods
employing non-Gaussian distributions is, however, beyond the scope of the present work, and left for future research.

5. Application

In this section we present an application of the proposed methodology to European agricultural data. Our assumption
is that such type of data can appropriately be modeled by a DFM. In particular, the considered time series may possibly
be driven by several factors such as, e.g., weather conditions as well as the overall economic situation. For our analysis
we choose the monthly soft wheat prices which have been obtained from the Eurostat database. The requirement of time
series of reasonable length restricts our attention to the five European countries Belgium, France, Italy, the Netherlands
and the United Kingdom for the time span January, 1969–April, 1998, resulting in T = 352 months. Original Eurostat data
containmanymissing valueswhich have been linearly interpolated. Fig. 9 displays the five time series ofmonthly soft wheat
prices which appear to be non-stationary by visual inspection. This observation is also confirmed by standard testing on the
presence of unit roots in time series such as the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test, and an augmented
Dickey–Fuller (ADF) test. One can observe that the time series follow similar dynamics with Belgium and the Netherlands
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Fig. 9. Monthly time series of soft wheat prices of Belgium, France, Italy, Netherlands, and the United Kingdom from January, 1969 to April, 1998, resulting
in T = 352 months.

Table 5
P-values of the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for a unit
root in the univariate time series and an augmented Dickey–Fuller (ADF) test
for a unit root in a univariate time series for monthly log returns of Belgium,
France, Italy, Netherlands, and the United Kingdom from February, 1969 to
April, 1998.

Test Belgium France Italy Netherlands UK

KPSS 0.100 0.100 0.100 0.100 0.100
ADF 0.010 0.010 0.010 0.010 0.010

having almost coinciding lines, whereas France and Italy have the same pattern with that of Italy being shifted upwards. The
dynamics of the UK time series is close to that of Italy before the 1980s and to that of Belgium and France thereafter which
possibly implies a structural break in these time series.

Our model assumptions require the data to be stationary. To meet this requirement at least approximately, the original
time series have been transformed into logarithmic returns leading to T = 351, see Fig. 10 and Table 5. Whereas all log
returns appear to be more volatile after the 1980s, the UK log returns seem to follow a very specific pattern: they are
particularly volatile in the beginning as well as towards the end of the series.

The likelihood-ratio test suggests that a single-factor model is sufficient for this particular data set with the value
χ2(10) = 2.9428 of its test statistic being far below the corresponding critical value, see Geweke (1977). This result,
however, cannot fully be confirmed by the screeplot based on the principal component analysis of the observational (log
transformed) matrix X as according to the screeplot there are at least three factors explaining approximately 47%, 22%, and
16% of the overall variance, respectively. Additional common factors may be caused by the strong dynamics in some of the
idiosyncratic factors, see the discussion of Boivin et al. (2008) and Uhlig (2008). Therefore, we estimated the model with
1 ≤ k ≤ 3 common factors subsequently to judge whether additional common factors add substantial new information to
the model. We adopted the identification scheme for the model as in Geweke (1977).

We present our estimation results for the DFMwith k = 2 common factors, aswe observe quantitatively significant factor
loadings for the first factor as well as weaker but still non-negligible loadings for the second factor. The possible presence
of the third factor might be due to the strong idiosyncracy in one particular of the time series, possibly the time series of
the log returns of the soft wheat of the UK, and the extension of the model to k = 3 does not provide remarkably different
results. As far as the interpretation of the factors is concerned we hypothesize that the first factor is the overall market trend
and the second one is the rainfall which is likely to be random, see Matalas (1963).

The estimated spectrum is illustrated in Fig. 11 and the parameter estimates are listed in Table 6. The spectrum in Fig. 11
has the so-called typical shape of economic variables with spikes in the norm of the periodogram corresponding to the lower
frequencies, see Granger (1966). This phenomenon is explained by the dominance of long-term trends, longer cycles, in the
behavior of the wheat market in the five aforementioned countries. The parameter estimates provide further insights on
the structure of the commodity market for the soft wheat in these countries. The model seems to explain the variations in
log returns in Belgium and the Netherlands quite well with significant factor loadings and idiosyncratic variations being
quite low. To a lesser extent the log returns of France and Italy can be explained by the model as one can observe quite
high idiosyncratic variations and lower factor loadings. Finally, the log returns of the soft wheat in the UK seem to follow a
distinctive process with very high factor loadings as well as significant idiosyncratic variances unobserved in the countries
of continental Europe. Thus onemight conclude that although the log returns are responsive to certain common factors such
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Fig. 10. Monthly time series of log returns of soft wheat prices in percentages of Belgium, France, Italy, Netherlands, and the United Kingdom from February,
1969 to April, 1998, resulting in T = 351 months.

Fig. 11. DFM estimation results with p = 5, k = 2, T = 351 for monthly log returns in percentages of Belgium, France, Italy, Netherlands, and the United
Kingdom; February, 1969–April, 1998. The norms of the estimated piecewise constant spectrum as well as the estimated periodograms are plotted against
the frequency.
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Table 6
Parameter estimates of the DFM with p = 5, k = 2, T = 351 for monthly log returns in percentages of Belgium, France, Italy, Netherlands, and the United
Kingdom; February, 1969–April, 1998. The superscript refers to the bands 1 and 2.

Country Λ̃(1) Λ̃(2) s(1)ε s(2)ε

Belgium 4.1704 0.0820 2.6546 0.6417 0.0739 4.0783
France 3.1689 1.2306 1.0918 1.1962 9.2086 11.5473
Italy 2.0275 1.9937 0.9417 0.5938 6.2550 4.5313
Netherlands 2.2350 1.5268 1.5821 0.8409 2.3796 0.0000
UK 2.3473 2.6239 0.4150 0.2141 14.5718 13.0928

Table 7
Testing results for autocorrelation in Λ̃ and sε in the DFM with p = 5, k = 2, and T = 351 for monthly log returns in percentages of Belgium, France,
Italy, Netherlands, and the United Kingdom from February, 1969 to April, 1998, relying on M = 1000 bootstrap repetitions with α = 0.05. The first five
rows of the testing results for Λ̃ refer to the first common factor and the last five rows refer to the second common factor.

Country Λ̃ sε
Adjusted p-value Bootstrap decision Adjusted p-value Bootstrap decision

Belgium < 0.0001 1 < 0.0001 1
France < 0.0001 1 < 0.0001 1
Italy < 0.0001 1 < 0.0001 1
Netherlands 0.0034 1 < 0.0001 1
UK 0.0003 1 < 0.0001 1
Belgium 0.2476 0
France 0.9385 0
Italy 0.0026 1
Netherlands 0.0267 0
UK 0.0178 0

as, e.g., the overall market trend and the weather conditions, the geographical proximity, e.g., the amount of precipitation
in a particular region, plays an equally important role in modeling the corresponding market.

The autocorrelation plots of the log returns of the five considered European countries suggest that the data are
autocorrelated, see Fig. 12. It can be seen as well from Fig. 11 that the factors are likely to be autocorrelated as the
averaged norm of the periodogram of the observational process exhibits high fluctuations in the first band and notably
milder fluctuations in the second band. To judge whether this hypothesis is true as well as to indicate which factors are
autocorrelated we refer to Table 7, where we present Hommel-adjusted p-values as well as the test decision by bootstrap
for Problems 1 and 2. The testing results at α = 5% indicate that the first common factor and the idiosyncratic factors are
strongly autocorrelated with very small p-values. For the second common factor the testing results are in disagreement for
the Netherlands and the UK: whereas the bootstrap fails to reject the null, the asymptotic tests reject the hypothesis of no
autocorrelation with quite low p-values.

Based on this analysis we recommend modeling the log returns for the soft wheat in the five aforementioned European
countries taking into the account the following characteristics: (i) the geographical proximity plays an important role in the
modeling of the respective agricultural log returns, (ii) there is one leading common factor for all the five countries which is
autocorrelated and possibly a second one which is nearly random, (iii) the idiosyncratic factors are strongly autocorrelated.
These findings can be utilized in constructing forecasts for the respective market. The frequency-domain estimates are
typically not used in constructing forecasts in the DFM context. However, this topic is quite well elaborated upon in the
time domain; see, e.g., Bai and Ng (2008) and Forni et al. (2005).

6. Discussion

We have comprehensively described a parametric likelihood-based statistical inference approach in small-scale (dy-
namic) factor models. In particular, details of the implementation of estimation and testing methods have been elucidated
in a coherent and unified manner. Furthermore, ready-to-use MATLAB programs with which all results of the present
manuscript can be reproduced are available from the second author upon request.

As far as the multiple testing results are concerned, we have demonstrated that both the asymptotic chi-square tests and
themodel-based bootstrap tests approximately keep the FWER level, albeit their type I error behavior remained liberal even
for sample sizes of T = O(103). The fact that this behavior was exhibited in a very similar manner by both the asymptotic
chi-square tests and the model-based bootstrap tests indicates that the normal approximation of the null distribution of
the MLE of the vector of DFM parameters is the most crucial part in the presented methodology. This is in line with the
respective comments of Dickhaus and Pauly (2016). Hence, future work may consider nonparametric bootstrap approaches
circumventing the assumption of (asymptotic) normality of the MLE in the DFM context. Further possible extensions of this
work are to consider other multiple type I error criteria like, for instance, control of the false discovery rate, and to work out
multiple testing methodology for larger-scale DFMs, where both of these extensions are interrelated with each other.
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Fig. 12. Autocorrelation plots of monthly time series of log returns of soft wheat prices in percentages of Belgium, France, Italy, Netherlands, and the United
Kingdom from February, 1969 to April, 1998, resulting in T = 351 months.
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