
Earth and Planetary Science Letters 501 (2018) 112–118
Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Statistical models for point-counting data

Pieter Vermeesch

Department of Earth Sciences, University College London, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 April 2018
Received in revised form 3 August 2018
Accepted 8 August 2018
Available online xxxx
Editor: A. Yin

Keywords:
statistics
point-counting
heavy mineral analysis
petrography
micropalaeontology
palynology

Point-counting data are a mainstay of petrography, micropalaeontology and palynology. Conventional 
statistical analysis of such data is fraught with problems. Commonly used statistics such as the arithmetic 
mean and standard deviation may produce nonsensical results when applied to point-counting data. This 
paper makes the case that point-counts represent a distinct class of data that requires different treatment. 
Point-counts are affected by a combination of (1) true compositional variability and (2) multinomial 
counting uncertainties. The relative magnitude of these two sources of dispersion can be assessed by 
a chi-square statistic and test. For datasets that pass the chi-square test for homogeneity, the ‘pooled’ 
composition is shown to represent the optimal estimate for the underlying population. It is obtained by 
simply adding together the counts of all samples and normalising the resulting values to unity. However, 
more often than not, point-counting datasets fail the chi-square test. The overdispersion of such datasets 
can be captured by a random effects model that combines a logistic normal population with the usual 
multinomial counting uncertainties. This gives rise to the concept of a ‘central’ composition as a more 
appropriate way to average overdispersed data. Two- or three-component datasets can be displayed 
on radial plots and ternary diagrams, respectively. Higher dimensional datasets may be visualised and 
interpreted by Correspondence Analysis (CA). This is a multivariate ordination technique that is similar 
in purpose to Principal Component Analysis (PCA). CA and PCA are both shown to be special cases of 
Multidimensional Scaling (MDS). Generalising this insight to multiple datasets allows point-counting data 
to be combined with other data types such as chemical compositions by means of 3-way MDS. All the 
techniques introduced in this paper have been implemented in the provenance R-package, which is 
available from http://provenance .london -geochron .com.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The mineralogical composition of silicilastic sediments can be 
determined by tallying the occurrence of various minerals in a 
representative sample of (200–400, say) grains (Dryden, 1931; Van 
der Plas and Tobi, 1965; Weltje, 2002). Similarly, the fossil content 
of a deep sea sediment core may be characterised by tabulating 
the relative abundances of various species among >100 randomly 
selected specimens (Patterson and Fishbein, 1989; Buzas, 1990; 
Fatela and Taborda, 2002). Or palaeobiological environments may 
be reconstructed by tabulating the relative frequency of different 
types of pollen in a palaeosol or charcoal (Barkley, 1934; Clark, 
1982; Weng et al., 2006).

These are all examples of multivariate counting experiments, 
in which the unknown proportions of different species of miner-
als, fossils or pollen are estimated by counting a finite number 
of randomly selected items from a representative sample. Despite 
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the widespread use of this type of data in the Earth Sciences and 
related fields, their statistical analysis is demonstrably underdevel-
oped.

For example, there currently exists no agreed method to av-
erage multi-sample point-counting datasets, or to quantify point-
counting data dispersion. Traditionally, these operations were done 
by taking the arithmetic mean and standard deviation, respectively. 
Unfortunately, this may easily produce nonsensical results. For ex-
ample, Weltje (2002) shows that the common practice of using 
‘2-sigma’ confidence bounds around the arithmetic mean can pro-
duce physically impossible negative values when applied to petro-
graphic point-counts.

To solve these problems, Weltje (2002) argues that point-counts 
should be treated as compositional data, which are defined as 
“vectors representing parts of a whole that only carry relative 
information” (Pawlowsky-Glahn and Buccianti, 2011). According 
to this definition, compositional data can be renormalised to a 
constant sum (e.g., 100% if the composition is expressed as per-

centages, or 1 if fractions are used) without loss of information.
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Aitchison (1982, 1986) shows that the statistical analysis of such 
data is best carried out using a simple logratio transformation.

To illustrate this approach, let {ai,bi, ci} be a three-component 
dataset, where ai + bi + ci = 1 for 1 ≤ i ≤ m. Then this dataset can 
be mapped to a bivariate Euclidean data space as follows:

ui = ln(ai/ci) and vi = ln(bi/ci) (1)

After performing the desired statistical analysis (such as calcu-
lating averages and confidence regions) on the transformed data 
{ui, vi}, the results can be mapped back to the ternary diagram by 
means of an inverse logratio transformation:

ai = exp[ui]
exp[ui] + exp[vi] + 1

,

bi = exp[vi]
exp[ui] + exp[vi] + 1

, and (2)

ci = 1

exp[ui] + exp[vi] + 1

This procedure yields geologically meaningful (geometric)
means and confidence regions. Weltje (2002)’s adoption of logratio 
statistics to point-counting data represents a huge improvement 
over the ‘crude’ statistics employed previously. But it does not 
solve all our problems. There are two crucial differences between 
point counts and the classical compositional data discussed by 
Aitchison (1982, 1986).

First, point-counting data are associated with significant (count-
ing) uncertainties, which are ignored by classical compositional 
data analysis. For a single sample, this uncertainty is adequately 
described by multinomial counting statistics (Section 6 of Weltje, 
2002). But for larger datasets comprised of multiple samples, ex-
isting procedures to construct confidence regions (as discussed in 
Section 7 of Weltje, 2002) are inadequate because they lump to-
gether the ‘observational’ dispersion caused by counting statistics 
and the true ‘geological’ dispersion. Bloemsma and Weltje (2015)
describe a method to disentangle these two sources of uncertainty 
in a logratio context. They show that deconvolution of (spectro-
scopic) count data into a scale vector and a proportions matrix 
significantly improves multivariate analysis.

Second, point-counting data often contain zero values, which 
are incompatible with the log-ratio transformation defined in 
Equation (1). This problem also applies to the aforementioned ap-
proach by Bloemsma and Weltje (2015). These authors circum-
vented the occurrence of sporadic zeros by replacing them with 
small positive numbers. This and alternative ‘imputation’ strategies 
are further discussed by Martín-Fernández et al. (2003). When the 
number of zeros is small, imputation is considered to have a min-
imal influence on the data covariance structure. However, some 
point-counting datasets are dominated by zeros. So the presence 
of such values is not a cosmetic problem, but a fundamental char-
acteristic of this particular data type. The statistical treatment of 
point-counting data needs to address this issue at a deeper level.

The present paper solves these long standing problems us-
ing established statistical methods adopted from other disciplines. 
Much of the paper is based on the work of Galbraith (2005) in 
fission track geochronology. The fission track method is based on 
the ratio of the number of spontaneous 238U-tracks to the number 
of neutron-induced 235U-tracks per unit area in accessory min-
erals such as apatite or zircon. This is equivalent to a simple 
two-component point-counting problem. Section 2 uses this equiv-
alence to derive the concept of a ‘pooled composition’. We will 
show that the latter represents the most reliable (in terms of accu-
racy and precision) average of homogeneous point-counting data.

The analytical uncertainty of individual point-counting propor-
tions may greatly vary between samples. Section 3 introduces Gal-

braith (1988)’s radial plot as a graphical means of visualising such 
Table 1
Two synthetic ternary point-counting datasets. Data 1 was drawn from a single 
multinomial distribution with population proportions of 45%, 45% and 10% for com-
ponents a, b and c, respectively. Data 2 was drawn from a continuous mixture of 
multinomial distributions whose true proportions were drawn from a bivariate lo-
gistic normal distribution with a geometric mean of 45% for a and b, 10% for c, and 
100% dispersion with a correlation coefficient of −0.5 between the two logratio di-
mensions. R , C and N refer to the row, column, and total sums, respectively.

Data 1 Data 2

# a b c R # a b c R

1 16 18 4 38 1 23 24 5 52
2 25 17 3 45 2 60 24 7 91
3 18 18 0 36 3 45 43 12 100
4 7 14 3 24 4 2 53 4 59
5 12 10 3 25 5 8 32 10 50
6 32 30 13 75 6 53 21 23 97
7 35 38 13 86 7 1 6 3 10
8 20 20 7 47 8 2 17 1 20
9 10 9 3 22 9 10 10 4 24
10 29 36 5 70 10 2 35 3 40
11 34 34 9 77 11 29 21 3 53
12 22 47 12 81 12 2 13 0 15
13 9 9 2 20 13 3 9 0 12
14 37 36 13 86 14 34 1 0 35
15 46 25 16 87 15 28 19 4 51
16 50 37 7 94 16 49 11 3 63
17 28 34 8 70 17 0 72 2 74
18 39 50 6 95 18 55 28 13 96
19 44 36 10 90 19 7 8 3 18
20 28 21 4 53 20 20 5 2 27

C 541 539 142 N = 1222 C 433 452 90 N = 987

‘heteroscedastic’ data. Originally developed for fission track data, 
the radial plot can also be used to display point-counting ratios, 
which frequently occur in the Earth Sciences. Radial plots allow a 
visual assessment of the degree to which counting uncertainties 
can explain the observed scatter between multiple ratio estimates. 
Section 4 presents a formal statistical test to make this assessment 
more quantitative.

The pooled composition is only applicable to samples that pass 
this chi-square test for sample homogeneity. Multi-sample datasets 
that fail the chi-square test are said to be ‘overdispersed’ with re-
spect to the counting uncertainties. The degree of overdispersion 
may be quantified by means of a continuous mixture model (Sec-
tion 5). This model leads to the concept of a ‘central composition’ 
as a better alternative to the pooled composition of Section 2. Sec-
tion 6 generalises the continuous mixture model from two to three 
(or more) components.

Finally, Section 7 introduces Correspondence Analysis (CA) as 
a useful ordination technique for multivariate point-counting data. 
CA is closely related to compositional Principal Component Analy-
sis (PCA). But unlike the latter method, it does not suffer from the 
zero counts problem.

All the techniques discussed above will be illustrated with a 
combination of synthetic and real examples. The methods of Sec-
tions 2–6 will use the two datasets shown in Table 1. Data 1 
consists of 20 random samples of 23–94 items each, which were 
drawn from a discrete trinomial distribution with 45% of com-
ponent a, 45% of component b and 10% of component c. Data 2 
comprises a further 20 samples that were drawn from a contin-
uous distribution whose mode is the same as that of Data 1, but 
which adds 100% of dispersion around this mode. Thus, Data 2 has 
two sources of dispersion (counting error and true population dis-
persion), whereas Data 1 only has one (counting error). Note that 
both datasets contain fewer counts per sample than is custom-
ary in real world applications. But they are nevertheless realistic 
if we consider them to be ternary subcompositions of higher di-

mensional datasets.
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2. The pooled composition

Let us partition a population of objects (such as minerals, fos-
sils or pollen) into two classes. Let θ be the true fraction of the 
first class, and (1 − θ) the true fraction of the second class, respec-
tively. Suppose that we have collected m representative samples of 
randomly selected items from this population. For each of these 
samples, let ni1 represent the number of items belonging to the 
first class and ni2 the number of items belonging to the second 
class (for 1 ≤ i ≤ m). Further let ni• be the total number of counts 
in the ith sample so that ni• ≡ ni1 + ni2. The probability of observ-
ing ni1 and ni2 given ni• then follows a binomial distribution:

p(ni1,ni2|ni•) =
(

ni•
ni1

)
θni1(1 − θ)ni2 (3)

The true value of θ is unknown but can be estimated (as θ̂ ) by 
jointly considering all m samples and maximising their summed 
log-likelihood (Lp ):

Lp =
m∑

i=1

[
ln

(
n•i

ni1

)
+ ni1 ln(θ) + ni2 ln(1 − θ)

]

= constant + n•1 ln(θ) + n•2 ln(1 − θ)

(4)

where n•1 ≡ ∑m
i=1 ni1 and n•2 ≡ ∑m

i=1 ni2. Equation (4) is max-
imised if θ̂ = n•1/(n•1 + n•2). In other words, the maximum 
likelihood solution is found by pooling all the counts together. 
A 100(1 − α)% confidence interval for θ is given by

n•1

n•1 + (n•2 + 1)F α
2(n•2+1),2n•1

< θ <
(n•1 + 1)F α

2(n•1+1),2n•2

n•2 + (n•1 + 1)F α
2(n•1+1),2n•2

(5)

where F α
j,k denotes the 100(1-α)-percentile of an F -distribution 

with j and k degrees of freedom. The same equation can be used 
to construct a confidence interval for θi by replacing n•1 with ni1
and n•2 with ni2.

Let us consider the binary subcomposition comprised of a and 
b in samples 11 and 13 of Data 1 as an example. For sample 11, 
a = b = 34 so that θ̂11 = 0.5 ± 0.11. For sample 13, a = b = 9 so 
that θ̂13 = 0.5 ± 0.21. In other words, although the binomial pa-
rameter estimates of these two samples are the same, the widths 
of their 95% confidence intervals differ by a factor of two. In sta-
tistical terms, this is called heteroscedasticity. The following section 
of this paper will introduce a graphical means of visualising het-
eroscedastic data.

3. A radial plot for point-counting ratios

In many Earth Sciences applications, it is not so much the abso-
lute proportions but the ratios between binary (sub)compositions 
that are of interest. For example, in the context of heavy mineral 
analysis the apatite/tourmaline, monazite/zircon, and TiO2/zircon 
ratios (e.g., Morton and Hallsworth, 1994), and the epidote/garnet 
ratio (Heroy et al., 2003) have all be used to identify the prove-
nance of sediments. In micropalaeontology, the ratio of benthic 
to planktonic foraminifera has been used as a productivity in-
dex (e.g., Berger and Diester-Haass, 1988). And in palynology, the 
arboreal/non-arboreal pollen ratio is widely used as an index of 
landscape openness (e.g., Herzschuh, 2007).

Given an estimate of the binomial parameter, θ̂ , such ratios can 
be simply obtained as θ̂ /(1 − θ̂ ). The corresponding 100(1 − α)%
confidence intervals can be calculated using Equation (5). Apply-
ing this to samples 11 and 13 of Data 1 as an example, we obtain 

a/b-ratio estimates of 1.00 +0.53/−0.35 for sample 11, and 1.00 
+1.43/−0.58 for sample 13. So like the binomial parameter esti-
mates, also the ratio estimates are heteroscedastic. A radial plot is 
a graphical device that was specifically designed to display such 
data.

Given a set of paired counts {ni1,ni2} (for 1 ≤ i ≤ m), the radial 
plot is a scatter diagram that sets out (zi − z◦)/si against 1/si , 
where

zi = arcsin
(√

(ni1 + 3/8)/(ni• + 3/4)
)

,

z◦ = arctan
(√

n•1/n•2

)
, and (6)

si = 1/
(

2
√

ni• + 1/2
)

Precise measurements plot towards the right hand side of 
this plot and imprecise measurements to the left. The actual 
n1i/n2i -ratio is proportional to the slope of a line connecting the 
ith data point to the origin. The corresponding values are shown 
on a circular scale placed at some convenient radial distance away 
from the origin.

Fig. 1.i shows a radial plot for the first two components (a
and b) of Data 1. Samples 11 and 13 of Data 1 have been high-
lighted. Recall that the estimated a/b-ratio of sample 11 has the 
same value but twice the precision of sample 13. Therefore, sam-
ple 11 plots at the same angle, but towards the right of sample 13.

Fig. 1.ii displays the a/b-ratios of Data 2. Let us have a closer 
look at samples 2 and 7, which are marked in black on this di-
agram. The total number of grains counted in these two samples 
are n2• = 60 + 24 = 84, and n7• = 1 + 6 = 7, respectively (Table 1). 
So sample 2 is twelve times larger than sample 7, allowing a more 
precise a/b-ratio estimate. Sample 2 therefore plots to the right 
of sample 7, causing the 95%-confidence interval for the former 
sample to be narrower than that of the latter. Projecting the two 
samples onto the radial scale yields a ratio of a/b = 2.5 +1.7/ −1.0
for sample 2 and a/b = 0.17 + 1.20/ − 0.16 for sample 7.

The dispersion of the data with respect to the counting uncer-
tainties can be visually assessed by comparing the vertical scatter 
of the data with a confidence band of two standard errors wide 
drawn on either side of the origin. If approximately 95% of the 
data plot within this interval, then the data are compatible with 
a homogeneous composition. This is the case for Data 1, which 
can therefore be safely averaged using the pooled ratio (Fig. 1.i). In 
contrast, the a/b-ratios of Data 2 significantly scatter beyond the 
‘2-sigma’ confidence region (Fig. 1.ii). In this case the pooled av-
erage should be abandoned in favour of a heterogeneous model 
(Section 5).

In conclusion, the radial plot is a useful device to visually assess 
the dispersion of point-counting ratios. The next section of this 
paper introduces a formal statistical test to make this assessment 
more quantitative.

4. A chi-square test for compositional homogeneity

In order for the pooled composition to be a meaningful descrip-
tion of the detrital population, all samples must be derived from 
a single true composition. In other words, any observed differ-
ences between the ni1/ni2-ratios must be due to binomial counting 
statistics alone. The validity of this assumption can be verified by 
calculating the chi-square statistic:

χ2
stat = 1

n•1n•2

m∑
i=1

[ni1n•2 − ni2n•1]2

ni•
(7)

If χ2
stat is greater than the 100(1 −α)-percentile of a chi-square 

distribution with (m −1) degrees of freedom, then the null hypoth-
esis of compositional homogeneity is rejected on a 100(1 − α)%

confidence level, where α is usually taken to be 0.05.
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Fig. 1. Radial plots of the binary subcompositions a and b for Table 1. i) approximately 95% of the samples in Data 1 plot within a symmetric ‘2-sigma’ band around the 
origin. These data are therefore compatible with a single homogeneous population. The pooled composition then is the best estimate for the average composition (Section 2). 
ii) the a/b-ratio of each sample can be obtained by projecting the corresponding scatter point onto the radial scale. The black dots mark samples 2 (right) and 7 (left) of 
Data 2. Projecting a ‘2-sigma’ error bar onto the same scale yields the 95% confidence intervals of a/b = 2.5 + 1.7/ − 1.0 for sample 2 and a/b = 0.17 + 1.20/ − 0.16 for 
sample 7, respectively. In contrast with Data 1, the a/b-ratios of Data 2 do not fit within a ‘2-sigma’ band. In this case the data are more adequately described by a random 

effects model with two parameters: the central ratio and the dispersion.
An alternative way to quantify the dispersion of the data with 
respect to the expected counting fluctuations is to divide χ2

stat by 
the number of degrees of freedom. This parameter is known as the 
‘reduced chi-square statistic’, but is also frequently referred to as 
the ‘Mean Square of the Weighted Deviates’ in the Earth Sciences 
(Wendt and Carl, 1991):

MSWD ≡ χ2
stat/(m − 1) (8)

If the observed scatter is entirely due to binomial counting 
statistics, then the MSWD is expected to take values close to unity. 
This is the case for Data 1, whose a/b subcomposition is charac-
terised by an MSWD of 1.4 and a p-value of 0.13. The latter value 
is well above the 0.05 cutoff, making the pooled composition the 
most appropriate average. The pooled a/b-ratio of Data 1 is 1.00 ±
0.10, which agrees with the known ratio of 1.00 (Section 1).

MSWD values significantly greater than one indicate the pres-
ence of excess scatter beyond the binomial counting statistics. This 
is the case for Data 2, which yields an MSWD-value of 16 and a p-
value close to zero. In this situation, the pooled composition is not 
the most appropriate estimator for the population average and a 
more realistic model must be used. An example of one such model 
is given in Section 5.

5. Continuous mixtures

Datasets that fail the chi-square test for homogeneity are in-
compatible with a single binomial population. Instead their bino-
mial population parameter θ may be drawn from a continuous 
distribution. Suppose that θ is drawn from a logistic normal dis-
tribution with geometric mean μ and coefficient of variation σ , 
and define

β ≡ ln

(
θ

1 − θ

)
∼ N (μ,σ 2) (9)

where N (μ, σ 2) stands for “the normal distribution with mean μ
and variance σ 2”. Note that β is a logratio similar to those defined 
in Equation (1). Given the usual m sets of point-counts {ni1, ni2}

and maximising the log-likelihood function Lc
Lc =
m∑

i=1

ln

⎧⎪⎪⎨
⎪⎪⎩

(
ni•
ni1

) ∞∫
−∞

exp [βni1]

(exp [β] + 1)ni•

exp

[
− 1

2

(
β−μ
σ

)2
]

σ
√

2π
dβ

⎫⎪⎪⎬
⎪⎪⎭

(10)

yields two estimates μ̂ and σ̂ whose approximate standard er-
rors may be obtained by inverting the Hessian matrix of second 
derivatives of Lc . The integrals in Equation (10) cannot be eval-
uated analytically, but a quick numerical solution is provided by 
Galbraith and Laslett (1993). The ‘central’ composition is then de-
fined as:

θ̂ = exp[μ̂]
exp[μ̂] + 1

(11)

which is akin to the inverse logratio transformation defined in 
Equation (2). The central a/b-ratio for Data 2 is 0.80 ± 0.34
(Fig. 1.ii), which again agrees with the true ratio of 1.00 that was 
reported in Section 1.

The dispersion estimate σ̂ quantifies the geological variability 
of the underlying population. This is just as useful a quantity as the 
central value itself. It estimates the relative spread of the underly-
ing population without the binomial counting errors. For example 
the coefficient of variation (standard deviation divided by mean) of 
the a/b-ratio measurements for Data 2 is ∼260%. This is far greater 
than the ∼110% dispersion estimated by the random effects model. 
The latter estimate is much closer to the true dispersion of the un-
derlying population, whose value is 100% (Section 1).

It is useful to note that, for samples that pass the chi-square 
test for sample homogeneity, the pooled ratio is the same as the 
central ratio. This is indeed the case for Data 1, which yields a 
pooled ratio of 1.00 ± 0.10 and a central ratio of 1.00 ± 0.14. The 
larger 95% uncertainty interval of the latter is due to the loss of 
one degree of freedom that is required to estimate σ̂ .

6. Ternary models

The statistical models presented in the previous sections can be 

generalised from two to three or more components. This is trivial 
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Fig. 2. Statistical analysis of ternary point-counting data. i. Data 1 is sampled from 
a homogeneous population, whose mean is given by the pooled composition shown 
as a black square. ii. Data 2 is derived from a continuous mixture (see the caption 
of Table 1 for details). Its estimated central composition is shown as a black square, 
and the 95% confidence envelope corresponding to its dispersion parameters as a 
solid contour line. The dashed contour marks the true dispersion region for the 
population, also shown at 95% confidence.

for homogeneous populations such as Data 1, whose pooled com-
position is shown in Fig. 2.i. For heterogeneous populations such as 
Data 2, the continuous mixture model of Section 5 can be gener-
alised by defining two population parameters β1 ≡ ln[θ1] − ln[1 −
θ1 − θ2] and β2 ≡ ln[θ2] − ln[1 − θ1 − θ2]. Assuming that β1 and 
β2 are drawn from a bivariate normal distribution with mean M
and covariance matrix �, the three-component equivalent to Equa-
tion (10) becomes

Lt =
m∑

i=1

ln

{
ni•!

ni1!ni2!ni3!
∞∫

−∞

∞∫
−∞

exp [β1ni1 + β2ni2]

(exp [β1] + exp [β2] + 1)ni•

exp
[− 1

2 (B − M)T �−1 (B − M)
]

2π
√|�| dβ1dβ2

} (12)

where {ni1,ni2,ni3} are the ternary counts of the ith sample, with 
ni1 + ni2 + ni3 = ni• for 1 ≤ i ≤ m;

B =
[

β1
β2

]
; M =

[
μ1
μ2

]
; and � ≡

[
σ 2

1 σ1,2

σ1,2 σ 2
2

]

in which σ1 and σ2 are the standard deviations of β1 and β2, and 
σ1,2 is their covariance. Equation (12), like Equation (10), does not 
have an analytical solution and requires numerical integration for 
each sample. The fast algorithm of Galbraith and Laslett (1993)
can be used to estimate μ1, μ2, σ1 and σ2 so that only the co-
variance σ1,2 remains to be found. The central composition is then 
estimated by substituting μ̂1 for ui and μ̂2 for vi in Equation (2). 
Fig. 2.ii applies this model to Data 2, showing the central com-
position as a black square and using the dispersion estimate �̂ to 
define a 95% confidence region for the underlying population (solid 
line).

The definition of β1 and β2 that is used in Equation (12) is con-
sistent with the logratio approach of Equation (1). However other 
parameterisations are possible as well. For example, we could de-
fine three logistic population parameters (βi ≡ ln[θi] − ln[1 −θi] for 
1 ≤ i ≤ 3) to ensure compatibility with the bivariate random effects 
model of Section 5. These alternative parameterisations are inter-
changeable with each other and can easily be converted to each 
other.

7. Correspondence analysis

The previous sections of this paper have shown that binary or 
ternary datasets can be visualised as radial plots and ternary dia-

grams, respectively. These two-dimensional graphics are useful for 
interpreting binary or ternary point-counting data, but cannot so 
easily be applied to higher dimensional datasets. In this section, 
we will consider the general case of a K -component dataset X
contained in an [m × K ]-matrix. We will explore some strategies 
to display such a dataset as a two-dimensional graphic.

Principal Component Analysis (PCA, Pearson, 1901) is an ordi-
nation technique that is commonly used for exploratory data anal-
ysis of multi-dimensional datasets. PCA is a two step process. First, 
the data are ‘centred’ by subtracting the arithmetic mean composi-
tion from each column. Second, the centred data are decomposed 
into an orthogonal set of K principal components. Plotting the first 
two principal components against each other then yields the de-
sired two-dimensional data projection.

Unfortunately, PCA cannot readily be applied to compositional 
data or point-counting data. This is because the first step involves 
taking an arithmetic mean, which we have already shown to be 
problematic in Section 1. Subjecting the data to a logratio transfor-
mation prior to PCA analysis solves this problem (Aitchison, 1983). 
But this solution generally does not work for point-counting data 
due to its inability to handle zero count data. This issue is ag-
gravated by the tendency for high dimensional datasets to contain 
more zeros than lower dimensional datasets do.

Correspondence Analysis (CA, Greenacre, 1984) fixes these is-
sues by explicitly treating the data as counts. CA is a multivariate 
ordination technique that is conceptually similar to PCA. To un-
derstand the relationship between the two methods, it is useful 
to point out that PCA and CA are both special cases of another 
exploratory data analysis method called Multidimensional Scaling 
(MDS, Kruskal and Wish, 1978; Vermeesch, 2013). Given a table of 
pairwise ‘dissimilarities’ between samples, MDS produces a map in 
which similar samples plot close together and dissimilar samples 
plot far apart.

PCA is a special case of MDS in which the dissimilarities are Eu-
clidean distances. CA is another special case of MDS in which the 
dissimilarities are chi-square distances (Legendre and Gallagher, 
2001; Greenacre, 2005):

dij =
√√√√ K∑

k=1

X••
X•k

(
Xik

Xi•
− X jk

X j•

)2

(13)

where dij is the dissimilarity between samples i and j (with 1 ≤ i,

j ≤ m); X•k = ∑m
i=1 Xik; Xi• = ∑K

k=1 Xik; X j• = ∑K
k=1 X jk; and 

X•• = ∑m
i=1

∑K
k=1 Xik . In the case of PCA, the principal compo-

nents are obtained by linear combination of the original variables. 
The weightings of these variables can be displayed together with 
the transformed data as a biplot (Aitchison and Greenacre, 2002). 
The same principle can be applied to CA (Fig. 3).

8. Examples

All the methods discussed in this paper were added to the
provenance package of Vermeesch et al. (2016). Written in the 
statistical programming language R, provenance comes with a 
query-based user interface that does not require any programming 
skills. Alternatively, the full functionality of the package can also 
be accessed via the command line, as demonstrated in the follow-
ing tutorial.

Point-counting data can be read from a .csv file using the
read.counts function. For example, to read the second dataset 
from Table 1:

data2 <- read.counts('data2.csv')

Plotting the ratios of the first two variables (a/b) as a radial 

plot (Fig. 1.i):
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radialplot(data2,num='a',den='b')

where num and den are optional arguments denoting the names 
of the numerator and denominator component, respectively. Plot-
ting the full dataset on a ternary diagram and constructing its 95% 
confidence region (Fig. 2.ii):

# create a ternary data object:
tern <- ternary(data2)
# show the data on a ternary diagram
# as white circles without data labels:
plot(tern,pch=1,labels=NA)
# add the 95% confidence region:
ternary.ellipse(tern,alpha=0.05)

where everything that follows a hash character (‘#’) is a comment 
and is ignored. Next, let us consider a real dataset of heavy mineral 
counts from Namibia published by Vermeesch et al. (2016). The 
following code snippet calculates the central composition for these 
data:

HM <- read.counts('HM.csv')
avg <- central(HM)

The variable avg contains a [5 × 15] table in which each col-
umn corresponds to a mineral species, and the rows contain (1) 
the central value for the binomial parameters (θi for 1 ≤ i ≤ 15) 
for those minerals; (2) the standard error for the binomial param-
eters; (3) the overdispersion parameter for the binary composition 
parameter ln[θi] − ln[1 − θi]; (4) the MSWD value for each binary 
subcomposition; and (5) the corresponding p-value.

Next, we will perform a correspondence analysis of the Namib 
data. But before doing so, it is important to point out that CA is 
most sensitive to the least abundant components. To mitigate the 
effects of this phenomenon, it is useful to pre-process the data. The 
following code snippet selects the most abundant minerals (epi-
dote, garnet, amphibole and clinopyroxene) from the datasets and 
amalgamates the ultra-stable minerals (zircon, tourmaline and ru-
tile), which have similar petrological significance:

HM2 <- amalgamate(HM,ztr=c('zr','tm','rt'),ep='ep',
gt='gt',amp='amp',cpx='cpx')

The resulting data object (HM2) still contains a number of zero 
values, but is no longer dominated by them. The actual CA calcu-
lation then proceeds as follows:

# perform the calculations:
ca <- CA(HM2)
# show the results as a biplot:
plot(ca)

The biplot (Fig. 3) displays the samples in black and the miner-
als as red arrows. The tight clustering of samples N1, N2, N3, N10, 
N12, N14, T8 and T13 reflects the compositional similarity between 
these samples, which were all derived from the coastal parts of the 
Namib Sand Sea (Vermeesch and Garzanti, 2015). In contrast, in-
land samples N4, N5, N8 and N9 plot elsewhere, indicating that 
they have a different composition. This is due to a combination of 
provenance and hydraulic sorting effects (Vermeesch and Garzanti, 
2015).

The configuration of the mineral labels provides further insight 
into the factors that cause the dispersion of the samples on the 
biplot. For example, the orientation of the red arrows shows that 
samples N8 and N9 are enriched in garnet and ultra-stable min-
erals, whereas sample N5 is enriched in epidote relative to the 

coastal samples. The arrows for epidote and clinopyroxene point 
Fig. 3. Correspondence analysis of heavy mineral compositions from Namibia (Ver-
meesch et al., 2016) shown as a biplot. Samples are shown in black, minerals in 
red. (For interpretation of the colours in the figure, the reader is referred to the 
web version of this article.)

in opposite directions, indicating that these two minerals are anti-
correlated with each other. In contrast, the arrow for garnet is 
perpendicular to that of epidote. This indicates that garnet and epi-
dote are uncorrelated with each other.

9. Discussion and conclusions

It is common practice in sedimentary petrography, palaeontol-
ogy and palynology to report the relative abundances of minerals, 
fossils or pollen as percentages. Unfortunately, by doing so one 
loses the ability to quantify the statistical uncertainty of the un-
derlying point-counting data. Normalisation of point-counts also 
compromises the ability to deal with missing (zero) components.

The statistical methods reviewed in this paper are built on the 
recognition that point-counts represent a distinct class of data. This 
new data class shares aspects with, but is fundamentally differ-
ent from Aitchison (1986)’s compositional data. Compositional data 
only carry relative information (Pawlowsky-Glahn and Buccianti, 
2011), and the absolute abundances of their components are ir-
relevant. In stark contrast with this, for point-counting data the 
absolute abundances do matter, because they control the precision 
of the estimated compositions (Bloemsma and Weltje, 2015).

This observation leads to a first recommendation, which is to 
report the total number of counts for each sample in published 
data tables. This allows the recovery of the raw point-counting 
data. Those data can then be further analysed using the techniques 
introduced in this paper.

Compositional data and point-counting data are closely related 
to each other. In fact, point-counting data are underlain by compo-
sitional populations. These populations can be constrained using a 
combination of multinomial and logratio statistics.

If the data are underlain by a single, fixed composition, then 
the point-counting data follow a multinomial distribution. In this 
case, the fixed composition of the underlying population can be es-
timated by pooling all the data together (Section 2). However, this 
simple scenario rarely occurs in the real world. Provided that a 

dataset is large enough, virtually all populations are overdispersed 
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with respect to the multinomial point-counting uncertainties (Sec-
tion 4).

For two-component systems, the degree of overdispersion can 
be visually assessed on a radial plot (Section 3). The dispersion 
may then be quantified using a three parameter continuous mix-
ture model (Section 5), which can be generalised to three (or 
more) components (Section 6). The continuous mixture model as-
sumes that the point-counting data are underlain by a logistic nor-
mal distribution. Although more realistic than the homogeneous 
population assumed by the pooled composition, the continuous 
mixture model is still a very simple approximation to real geo-
logical scenarios.

Correspondence Analysis was introduced as an effective tool 
for exploratory analysis of more complex and higher dimensional 
datasets (Section 7). It does not seek to capture the data in a sim-
plified analytical form. Instead, CA distills the salient similarities 
and differences between samples as a two-dimensional ‘map’, on 
which the variables can also be shown. Such biplots can provide 
valuable geological insights that would be difficult to obtain other-
wise.

CA is closely related to Principal Component Analysis. PCA can 
be applied to compositional data and uses Aitchison’s Euclidean 
logratio-distance as a measure to compare the (dis)similarities be-
tween samples. In contrast, CA uses the chi-square distance (Equa-
tion (13)), which makes it immune to the zero-count problem. 
Once we recognise the close affinity between the Aitchison dis-
tance and compositional data on the one hand, and between the 
chi-square distance and point-counting data on the other hand, 
then it is possible to add further complexity to our statistical anal-
ysis.

For example, Vermeesch and Garzanti (2015) introduce a tech-
nique called 3-way multidimensional scaling to combine different 
datasets together for the purpose of sedimentary provenance anal-
ysis. Using the insights gained from this paper, we could use the 
Aitchison distance to compare the major and trace element com-
positions of different samples, and the chi-square distance to com-
pare their bulk petrography and heavy mineral counts.
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