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Perspective functions arise explicitly or implicitly in various forms in applied 
mathematics and in statistical data analysis. To date, no systematic strategy is 
available to solve the associated, typically nonsmooth, optimization problems. In 
this paper, we fill this gap by showing that proximal methods provide an efficient 
framework to model and solve problems involving perspective functions. We study 
the construction of the proximity operator of a perspective function under general 
assumptions and present important instances in which the proximity operator can 
be computed explicitly or via straightforward numerical operations. These results 
constitute central building blocks in the design of proximal optimization algorithms. 
We showcase the versatility of the framework by designing novel proximal algorithms 
for state-of-the-art regression and variable selection schemes in high-dimensional 
statistics.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Perspective functions appear, often implicitly, in various problems in areas as diverse as statistics, con-
trol, computer vision, mechanics, game theory, information theory, signal recovery, transportation theory, 
machine learning, disjunctive optimization, and physics (see the companion paper [7] for a detailed account). 
In the setting of a real Hilbert space G, the most useful form of a perspective function, first investigated in 
Euclidean spaces in [24], is the following.

Definition 1.1. Let ϕ : G → ]−∞,+∞] be a proper lower semicontinuous convex function and let recϕ be 
its recession function. The perspective of ϕ is
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ϕ̃ : R× G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎨⎪⎪⎩
ηϕ(y/η), if η > 0;
(recϕ)(y), if η = 0;
+∞, if η < 0.

(1.1)

Many scientific problems result in minimization problems that involve perspective functions. In statistics, 
a prominent instance is the modeling of data via “maximum likelihood-type” estimation (or M-estimation) 
with a so-called concomitant parameter [17]. In this context, ϕ is a likelihood function, η takes the role of 
the concomitant parameter, e.g., an unknown scale or location of the assumed parametric distribution, and 
y comprises unknown regression coefficients. The statistical problem is then to simultaneously estimate the 
concomitant variable and the regression vector from data via optimization. Another important example in 
statistics [15], signal recovery [5], and physics [16] is the Fisher information of a function x : RN → ]0,+∞[, 
namely ∫

RN

‖∇x(t)‖2
2

x(t) dt, (1.2)

which hinges on the perspective function of the squared Euclidean norm (see [7] for further discussion).
In the literature, problems involving perspective functions are typically solved with a wide range of 

ad hoc methods. Despite the ubiquity of perspective functions, no systematic structuring framework has 
been available to approach these problems. The goal of this paper is to fill this gap by showing that they 
are amenable to solution by proximal methods, which offer a broad array of splitting algorithms to solve 
complex nonsmooth problems with attractive convergence guarantees [1,8,11,14]. The central element in 
the successful implementation of a proximal algorithm is the ability to compute the proximity operator 
of the functions present in the optimization problem. We therefore propose a systematic investigation of 
proximity operators for perspective functions and show that the proximal framework can efficiently solve 
perspective-function based problems, unveiling in particular new applications in high-dimensional statistics.

In Section 2, we introduce basic concepts from convex analysis and review essential properties of perspec-
tive function. We then study the proximity operator of perspective functions in Section 3. We establish a 
characterization of the proximity operator and then provide examples of computation for concrete instances. 
Section 4 presents new applications of perspective functions in high-dimensional statistics and demonstrates 
the flexibility and potency of the proposed framework to both model and solve complex problems in statis-
tical data analysis.

2. Notation and background

2.1. Notation and elements of convex analysis

Throughout, H, G, and K are real Hilbert spaces and H⊕G denotes their Hilbert direct sum. The symbol 
‖ · ‖ denotes the norm of a Hilbert space and 〈· | ·〉 the associated scalar product. The closed ball with center 
x ∈ K and radius ρ ∈ ]0,+∞[ is denoted by B(x; ρ).

A function f : K → ]−∞,+∞] is proper if dom f =
{
x ∈ K

∣∣ f(x) < +∞
}

�= ∅, coercive if 
lim‖x‖→+∞ f(x) = +∞, and supercoercive if lim‖x‖→+∞ f(x)/‖x‖ = +∞. Denote by Γ0(K) the class 
of proper lower semicontinuous convex functions from K to ]−∞,+∞], and let f ∈ Γ0(K). The conjugate 
of f is the function

f∗ : K → [−∞,+∞] : u �→
(

sup
x∈K

〈x | u〉 − f(x)
)
. (2.1)
It also belongs to Γ0(K) and f∗∗ = f . The subdifferential of f is the set-valued operator
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∂f : K → 2K : x �→
{
u ∈ K

∣∣ (∀y ∈ dom f) 〈y − x | u〉 + f(x) � f(y)
}
. (2.2)

We have

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ x ∈ ∂f∗(u). (2.3)

Moreover,

(∀x ∈ K)(∀u ∈ K) f(x) + f∗(u) � 〈x | u〉 (2.4)

and

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ f(x) + f∗(u) = 〈x | u〉. (2.5)

If f is Gâteaux differentiable at x ∈ dom f with gradient ∇f(x), then

∂f(x) = {∇f(x)}. (2.6)

Let z ∈ dom f . The recession function of f is

(∀y ∈ K) (rec f)(y) = sup
x∈dom f

(
f(x + y) − f(y)

)
= lim

α→+∞
f(z + αy)

α
. (2.7)

The infimal convolution operation is denoted by � . Now let C be a subset of K. Then

ιC : K → {0,+∞} : x �→
{

0, if x ∈ C;
+∞, if x /∈ C

(2.8)

is the indicator function of C,

dC : K → [0,+∞] : x �→ inf ‖C − x‖ (2.9)

is the distance function to C, and

σC = ι∗C : K → [−∞,+∞] : u �→ sup
x∈C

〈x | u〉 (2.10)

is the support function of C. If C is nonempty, closed, and convex then, for every x ∈ K, there exists a 
unique point PCx ∈ C, called the projection of x onto C, such that ‖x − PCx‖ = dC(x). We have

(∀x ∈ K)(∀p ∈ K) p = PCx ⇔
[
p ∈ C and (∀y ∈ C) 〈y − p | x− p〉 � 0

]
. (2.11)

The normal cone to C is

NC = ∂ιC : K → 2K : x �→
{{

u ∈ K
∣∣ sup 〈C − x | u〉 � 0

}
, if x ∈ C;

∅, otherwise.
(2.12)
For further background on convex analysis, see [1,24].
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2.2. Proximity operators

The proximity operator of f ∈ Γ0(K) is

proxf : K → K : x �→ argmin
y∈K

(
f(y) + 1

2‖x− y‖2
)
. (2.13)

This operator was introduced by Moreau in 1962 [20] to model problems in unilateral mechanics. In [12], 
it was shown to play an important role in the investigation of various data processing problems, and it has 
become increasingly prominent in the general area of data analysis [10,25]. We review basic properties and 
refer the reader to [1] for a more complete account.

Let f ∈ Γ0(K). Then

(∀x ∈ K)(∀p ∈ K) p = proxfx ⇔ x− p ∈ ∂f(p). (2.14)

If C is a nonempty closed convex subset of K and f = ιC , then

proxf = PC . (2.15)

Let γ ∈ ]0,+∞[. The Moreau decomposition of x ∈ K is

x = proxγfx + γproxf∗/γ(x/γ). (2.16)

The following facts will also be needed.

Lemma 2.1. Let (Ω, F, μ) be a complete σ-finite measure space, let K be a separable real Hilbert space, and 
let ψ ∈ Γ0(K). Suppose that K = L2((Ω, F, μ); K) and that μ(Ω) < +∞ or ψ � ψ(0) = 0. Set

Φ: K → ]−∞,+∞]

x �→

⎧⎪⎨⎪⎩
∫
Ω

ψ
(
x(ω)

)
μ(dω), if ψ ◦ x ∈ L1((Ω,F, μ);R

)
;

+∞, otherwise.

(2.17)

Let x ∈ K and define, for μ-almost every ω ∈ Ω, p(ω) = proxψx(ω). Then p = proxΦx.

Proof. By [1, Proposition 9.32], Φ ∈ Γ0(K). Now take x and p in K. Then it follows from (2.14) and [1, 
Proposition 16.50] that p(ω) = proxΦx(ω) μ-a.e. ⇔ x(ω) − p(ω) ∈ ∂ψ(p(ω)) μ-a.e. ⇔ x − p ∈ ∂Φ(p) ⇔
p = proxΦx. �
Lemma 2.2. Let D �= {0} be a nonempty closed convex subset of K, let x ∈ K, and let γ ∈ ]0,+∞[. Set 
f = ‖ · ‖ + σD and C = γD. Then

proxγfx =

⎧⎪⎨⎪⎩
0, if dC(x) � γ;(

1 − γ

dC(x)

)(
x− PCx

)
, if dC(x) > γ.

(2.18)
If, in addition, D is a cone and K denotes its polar cone, then f = ‖ · ‖ + ιK and
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proxγfx =

⎧⎪⎨⎪⎩
0, if ‖PKx‖ � γ;(

1 − γ

‖PKx‖

)
PKx, if ‖PKx‖ > γ.

(2.19)

Proof. Using elementary convex analysis, we obtain

f = ι∗B(0;1) + ι∗D =
(
ιB(0;1) � ιD

)∗ = ι∗B(0;1)+D = σB(0;1)+D. (2.20)

Hence, it follows from (2.16) and (2.15) that

proxγfx = x− γproxf∗/γ(x/γ) = x− γPB(0;1)+D(x/γ). (2.21)

However by [1, Propositions 28.1(ii) and 28.10],

γPB(0;1)+D(x/γ) = PB(0;γ)+C x =

⎧⎨⎩x, if dC(x) � γ;

PCx + γ
x− PC

dC(x) , if dC(x) > γ.
(2.22)

Upon combining (2.21) and (2.22), we arrive at (2.18). Now suppose that, in addition, D is a cone. Then 
C = D, σD = ιK , and (2.16) yields Id − PD = PK . Altogether, (2.18) reduces to (2.19). �
2.3. Perspective functions

We review here some essential properties of perspective functions.

Lemma 2.3. [7] Let ϕ ∈ Γ0(G). Then the following hold:

(i) ϕ̃ is a positively homogeneous function in Γ0(R ⊕ G).
(ii) Let C =

{
(μ, u) ∈ R× G

∣∣ μ + ϕ∗(u) � 0
}
. Then (ϕ̃)∗ = ιC and ϕ̃ = σC .

(iii) Let η ∈ R and y ∈ G. Then

∂ϕ̃(η, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(
ϕ(y/η) − 〈y | u〉/η, u

) ∣∣ u ∈ ∂ϕ(y/η)
}
, if η > 0;{

(μ, u) ∈ C
∣∣ σdom ϕ∗(y) = 〈u | y〉

}
, if η = 0 and y �= 0;

C, if η = 0 and y = 0;
∅, if η < 0.

(2.23)

(iv) Suppose that domϕ∗ is open or that ϕ is supercoercive, let η ∈ R, and let y ∈ G. Then

∂ϕ̃(η, y) =

⎧⎪⎪⎨⎪⎪⎩
{(

ϕ(y/η) − 〈y | u〉/η, u
) ∣∣ u ∈ ∂ϕ(y/η)

}
, if η > 0;

C, if η = 0 and y = 0;
∅, otherwise.

(2.24)

We refer to the companion paper [7] for further properties of perspective functions as well as examples. 
Here are two important instances of (composite) perspective functions that will play a central role in 
Section 4.

Lemma 2.4. Let L : H → G be linear and bounded, let r ∈ G, let u ∈ H, let α ∈ ]0,+∞[, let ρ ∈ R, and let 

q ∈ ]1,+∞[. Set
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f : H → ]−∞,+∞] : x �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖Lx − r‖q

α|〈x | u〉 − ρ|q−1 , if 〈x | u〉 > ρ;

0, if Lx = r and 〈x | u〉 = ρ;
+∞, otherwise

(2.25)

and A : H → R ⊕ G : x �→ (〈x | u〉 − ρ, Lx − r). Then f = [ ‖ · ‖q/α]∼ ◦A ∈ Γ0(H).

Proof. This is a special case of [7, Example 4.2]. �
Lemma 2.5. [7, Example 3.6] Let φ ∈ Γ0(R) be an even function, let v ∈ G, let δ ∈ R, and set

g : R⊕ G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎨⎪⎪⎩
ηφ(‖y‖/η) + 〈y | v〉 + δη, if η > 0;
(recφ)(‖y‖) + 〈y | v〉, if η = 0;
+∞, if η < 0.

(2.26)

Then g = [φ ◦ ‖ · ‖ + 〈· | v〉 + δ]∼ ∈ Γ0(R ⊕ G).

3. Proximity operator of a perspective function

3.1. Main result

We start with a characterization of the proximity operator of a perspective function when domϕ∗ is 
open.

Theorem 3.1. Let ϕ ∈ Γ0(G), let γ ∈ ]0,+∞[, let η ∈ R, and let y ∈ G. Then the following hold:

(i) Suppose that η + γϕ∗(y/γ) � 0. Then proxγϕ̃(η, y) = (0, 0).
(ii) Suppose that domϕ∗ is open and that η + γϕ∗(y/γ) > 0. Then

proxγϕ̃(η, y) =
(
η + γϕ∗(p), y − γp

)
, (3.1)

where p is the unique solution to the inclusion

y ∈ γp +
(
η + γϕ∗(p)

)
∂ϕ∗(p). (3.2)

If ϕ∗ is differentiable at p, then p is characterized by y = γp + (η + γϕ∗(p))∇ϕ∗(p).

Proof. It follows from Lemma 2.3(ii) that

ϕ̃ = σC , where C =
{
(μ, u) ∈ R⊕ G

∣∣ μ + ϕ∗(u) � 0
}
. (3.3)

Since ϕ ∈ Γ0(G), we have ϕ∗ ∈ Γ0(G). Therefore, C is a nonempty closed convex set. In turn, we derive 
from [9, Proposition 3.2] that proxγϕ̃ = proxσγC

is a proximal thresholder on γC in the sense that

(∀η ∈ R)(∀y ∈ G) proxγϕ̃(η, y) = (0, 0) ⇔ (η, y) ∈ γC. (3.4)

(i): By (3.3) and (3.4), (∀η ∈ R)(∀y ∈ G) proxγϕ̃(η, y) = (0, 0) ⇔ η + γϕ∗(y/γ) � 0.
(ii): Set (χ, q) = proxγϕ̃(η, y) and p = (y− q)/γ. It follows from (2.14) that (χ, q) ∈ dom (γ∂ϕ̃) and from 

(3.4) that (χ, q) �= (0, 0). Hence, we deduce from Lemma 2.3(iv) that χ > 0. Furthermore, we derive from 

(2.14) and Lemma 2.3(iii) that (χ, q) is characterized by
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η − χ = γϕ(q/χ) − 〈q/χ | y − q〉 and y − q ∈ γ∂ϕ(q/χ), (3.5)

i.e.,

(η − χ)/γ = ϕ(q/χ) − 〈q/χ | p〉 and p ∈ ∂ϕ(q/χ). (3.6)

However, (2.5) asserts that

p ∈ ∂ϕ(q/χ) ⇔ ϕ(q/χ) + ϕ∗(p) = 〈q/χ | p〉. (3.7)

Hence, we derive from (3.6) that ϕ∗(p) = (χ − η)/γ, i.e.,

χ = η + γϕ∗(p). (3.8)

Hence, by (2.3),

p ∈ ∂ϕ(q/χ) ⇔ q ∈ χ∂ϕ∗(p) ⇔ y ∈ γp +
(
η + γϕ∗(p)

)
∂ϕ∗(p). (3.9)

Altogether, we have established the characterization (3.1)–(3.2), while the assertion concerning the differ-
entiable case follows from (2.6). �
Remark 3.2. Here is an alternative proof of Theorem 3.1. It follows from Lemma 2.3(ii) that(

ϕ̃
)∗ = ιC , where C =

{
(μ, u) ∈ R⊕ G

∣∣ μ + ϕ∗(u) � 0
}

(3.10)

is a nonempty closed convex set. Hence, using (2.16) and (2.15), we obtain

proxγϕ̃(η, y) = (η, y) − γproxγ−1ϕ̃∗
(
η/γ, y/γ

)
= (η, y) − γPC

(
η/γ, y/γ

)
= (η, y) − PγC

(
η, y

)
. (3.11)

Now set (π, p) = PC(η/γ, y/γ). We deduce from (2.15), (2.16), and (2.12) that (π, p) is characterized by(
η/γ − π, y/γ − p

)
∈ NC(π, p). (3.12)

(i): We have (η/γ, y/γ) ∈ C. Hence, (π, p) = (η/γ, y/γ) and (3.11) yields proxγϕ̃(η, y) = (0, 0).
(ii): Set h : R ⊕G → ]−∞,+∞] : (μ, u) �→ μ +ϕ∗(u). Then C = lev�0 h and domh = R ×domϕ∗ is open. 

It therefore follows from [1, Proposition 6.43(ii)] that

Ndom h(π, p) = {(0, 0)}. (3.13)

Now let z ∈ domϕ∗ and let ζ ∈ ]−∞,−ϕ∗(z)[. Then h(ζ, z) < 0. Therefore, we derive from [1, Lemma 26.17 
and Proposition 16.8] and (3.13) that

NC(π, p) =
{
Ndom h(π, p) ∪ cone ∂h(π, p), if π + ϕ∗(p) = 0;
Ndom h(π, p), if π + ϕ∗(p) < 0

(3.14)

=
{

cone ∂h(π, p), if π + ϕ∗(p) = 0;
{(0, 0)}, if π + ϕ∗(p) < 0

=
{

cone
(
{1} × ∂ϕ∗(p)

)
, if π = −ϕ∗(p);

∗
(3.15)
{(0, 0)}, if π < −ϕ (p).
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Hence, if π < −ϕ∗(p), then (3.12) yields (η/γ − π, y/γ − p) = (0, 0) and therefore (η/γ, y/γ) = (π, p) ∈ C, 
which is impossible since (η/γ, y/γ) /∈ C. Thus, the characterization (3.12) becomes

π = −ϕ∗(p) and (∃ ν ∈ ]0,+∞[)(∃w ∈ ∂ϕ∗(p))
(
η/γ + ϕ∗(p), y/γ − p

)
= ν(1, w) (3.16)

that is, y ∈ γp + (η + γϕ∗(p))∂ϕ∗(p).

Remark 3.3. Let ϕ ∈ Γ0(G) be such that domϕ∗ is open, let γ ∈ ]0,+∞[, let η ∈ R, and let y ∈ G be 
such that η + γϕ∗(y/γ) > 0. We derive from (3.5) that y/χ − q/χ ∈ ∂(γϕ/χ)(q/χ) and then from (2.14)
that q = χproxγϕ/χ(y/χ). Using (2.16), we can also write q = y − proxχγϕ∗(·/γ)y. Hence, we deduce from 
Theorem 3.1 the implicit relation

proxγϕ̃(η, y) = χ
(
1, proxγϕ/χ(y/χ)

)
, where χ = η + γϕ∗

(proxχγϕ∗(·/γ)y

γ

)
. (3.17)

The next example is based on distance functions.

Example 3.4. Let ϕ = φ ◦ dD, where D = B(0; 1) ⊂ G and φ ∈ Γ0(R) is an even function such that φ(0) = 0
and φ∗ is differentiable on R. It follows from [1, Examples 13.3(iv) and 13.23] that ϕ∗ = ‖ · ‖ +φ∗ ◦‖ · ‖. Note 
that, since ϕ and φ are even and satisfy ϕ(0) = 0 and φ(0) = 0, ϕ∗ and φ∗ are even and satisfy ϕ∗(0) = 0
and φ∗(0) = 0 as well by [1, Propositions 13.18 and 13.19]. In turn, φ∗′(0) = 0 and we therefore derive from 
[1, Corollary 16.38(iii) and Example 16.25] that

(∀u ∈ G) ∂ϕ∗(u) =

⎧⎪⎨⎪⎩
{

1 + φ∗′(‖u‖)
‖u‖ u

}
, if u �= 0;

B(0; 1), if u = 0.
(3.18)

We have domϕ∗ = G and, in view of Theorem 3.1(ii), we need only assume that η + γϕ∗(y/γ) > 0, i.e.,

η + ‖y‖ + γφ∗(‖y‖/γ) > 0. (3.19)

Then (3.2) and (3.18) yield⎧⎪⎨⎪⎩y = γp +
(
η + γ

(
‖p‖ + φ∗(‖p‖)

))1 + φ∗′(‖p‖)
‖p‖ p, if p �= 0;

‖y‖ � η, if p = 0.
(3.20)

In view of Remark 3.2, the normal cone to the set C of (3.10) at (0, 0) is

K =
{
(η, y) ∈ [0,+∞[ × G

∣∣ ‖y‖ � η
}
. (3.21)

So, for every (η, y) ∈ K, PC(η/γ, y/γ) = (0, 0) and proxγϕ̃(η, y) = (η, y). Now suppose that (η, y) /∈ K. 
Then p �= 0 and, taking the norm in the upper line of (3.20), we obtain

γ‖p‖ +
(
η + γ

(
‖p‖ + φ∗(‖p‖)

))(
1 + φ∗′

(‖p‖)
)

= ‖y‖. (3.22)

Set (
η ∗

)( ∗′ ) ‖y‖

ψ : s �→ s +

γ
+ s + φ (s) 1 + φ (s) −

γ
(3.23)
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and define

θ : s �→ 1
2

((
η

γ
+ s + φ∗(s)

)2

+ s2
)
− ‖y‖s

γ
. (3.24)

Since φ∗ is convex, θ is strongly convex and it therefore admits a unique minimizer t. Therefore ψ(t) =
θ′(t) = 0 and ‖p‖ = t = ψ−1(‖y‖/γ) is the unique solution to (3.22). In turn, (3.20) yields

p = t

‖y‖ + γψ(t)y, (3.25)

and we obtain proxγϕ̃(η, y) via (3.1).

Next, we compute the proximity operator of a special case of the perspective function introduced in 
Lemma 2.5.

Corollary 3.5. Let v ∈ G, let δ ∈ R, and let φ ∈ Γ0(R) be an even function such that φ(0) = 0 and φ∗ is 
differentiable on R. Define

g : R⊕ G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎨⎪⎪⎩
ηφ(‖y‖/η) + δη + 〈y | v〉, if η > 0;
0, if y = 0 and η = 0;
+∞, otherwise.

(3.26)

Let γ ∈ ]0,+∞[, let η ∈ R, let y ∈ G, and set

ψ : s �→
(
φ∗(s) + η

γ
− δ

)
φ∗′

(s) + s. (3.27)

Then ψ is invertible. Moreover, if η + γφ∗(‖y/γ − v‖) > γδ, set

t = ψ−1(‖y/γ − v‖
)

and p =

⎧⎨⎩v + t

‖y − γv‖ (y − γv), if y �= γv;

v, if y = γv.
(3.28)

Then

proxγg(η, y) =
{(

η + γ(φ∗(t) − δ), y − γp
)
, if η + γφ∗(‖y/γ − v‖) > γδ;

(0, 0), if η + γφ∗(‖y/γ − v‖) � γδ.
(3.29)

Proof. This is a special case of Theorem 3.1 with ϕ = φ ◦‖ ·‖ +δ+〈· | v〉. Indeed, as shown in [7, Example 3.6], 
(3.26) is a special case of (2.26). Hence, we derive from Lemma 2.5 that g = ϕ̃ ∈ Γ0(R ⊕G). Next, we obtain 
from [1, Example 13.7 and Proposition 13.20(iii)] that

ϕ∗ = φ∗ ◦ ‖ · −v‖ − δ (3.30)

and therefore that

∇ϕ∗ : G → G : z �→

⎧⎪⎨φ∗′(‖z − v‖)
‖z − v‖ (z − v), if z �= v;

(3.31)
⎪⎩0, if z = v.
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In view of Theorem 3.1, it remains to assume that η + γϕ∗(y/γ) > 0, i.e., η + γφ∗(‖y/γ − v‖) > γδ, and to 
show that the point (t, p) provided by (3.28) satisfies

t = ‖p− v‖ and y = γp +
(
η + γϕ∗(p)

)
∇ϕ∗(p). (3.32)

We consider two cases:

• y = γv: Since φ is an even convex function such that φ(0) = 0, φ∗ has the same properties by [1, 
Propositions 13.18 and 13.19]. Hence, going back to Remark 3.2, since φ∗ is differentiable, the points 
that have (π, p) = (δ, v) as a projection onto C =

{
(μ, u) ∈ R⊕ G

∣∣ μ + φ∗(‖u− v‖) � δ
}

are the points 
on the ray 

{
(δ + λ, v)

∣∣ λ ∈ [0,+∞[
}
. Thus, we derive from (3.11) that

y = γv ⇔ PC(η/γ, y/γ) = (π, p) = (δ, v) ⇔ p = v ⇔ t = 0 ⇔

proxγϕ̃(η, y) = (η, y) − γ(δ, v) = (η − γδ, y − γp). (3.33)

Since φ∗(0) = 0, we recover (3.29).
• y �= γv: As seen in (3.33), p �= v. Using (3.30) and (3.31), (3.32) can be rewritten as

t = ‖p− v‖ and y − γv = γ(p− v) +
(
η + γφ∗(‖p− v‖) − γδ

)
φ∗′(‖p− v‖)

‖p− v‖ (p− v), (3.34)

that is,

t = ‖p− v‖ and y/γ − v =
‖p− v‖ +

(
η/γ − δ + φ∗(‖p− v‖)

)
φ∗′(‖p− v‖)

‖p− v‖ (p− v). (3.35)

In view of (3.27), this is equivalent to

t = ‖p− v‖ and y/γ − v = ψ(‖p− v‖)
‖p− v‖ (p− v). (3.36)

Upon taking the norm on both sides of the second equality, we obtain

ψ(t) = ψ(‖p− v‖) = ‖y/γ − v‖. (3.37)

We note that, since φ∗ is convex, ψ is the derivative of the strongly convex function

θ : s �→ 1
2

(
φ∗2(s) + s2

)
+
(
η

γ
− δ

)
φ∗(s). (3.38)

Consequently, ψ is strictly increasing [1, Proposition 17.13], hence invertible. It follows that t =
ψ−1(‖y/γ − v‖). In turn, (3.36) yields (3.28). �

Example 3.6. Define

g : R⊕ G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎨⎪⎪⎩
−
√

η2 − ‖y‖2, if η > 0 and ‖y‖ � η;
0, if y = 0 and η = 0;
+∞, otherwise,

(3.39)
let γ ∈ ]0,+∞[, let η ∈ R, let y ∈ G, and define
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ψ : s �→
(

2 + η

γ
√

1 + s2

)
s. (3.40)

If η +
√

γ2 + ‖y‖2 > 0, set

p =

⎧⎨⎩
t

‖y‖y, if y �= 0;

0, if y = 0,
where t = ψ−1

(
‖y‖
γ

)
. (3.41)

Then

proxγg(η, y) =

⎧⎨⎩
(
η + γ

√
1 + t2, y − γp

)
, if η +

√
γ2 + ‖y‖2 > 0;

(0, 0), if η +
√
γ2 + ‖y‖2 � 0.

(3.42)

Proof. This is a special case of Corollary 3.5 with δ = 0, v = 0, and

φ : s �→
{
−
√

1 − s2, if |s| � 1;
+∞, otherwise.

(3.43)

It follows from [1, Example 13.2(vi) and Corollary 13.33] that φ∗ : s �→
√

1 + s2. Hence, φ∗′ : s �→ s/
√

1 + s2

and we derive (3.42) from (3.29). �
Example 3.7. Let v ∈ G, let δ ∈ R, let α ∈ ]0,+∞[, let q ∈ ]1,+∞[, and consider the function

g : R⊕ G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖y‖q
αηq−1 + δη + 〈y | v〉, if η > 0;

0, if y = 0 and η = 0;
+∞, otherwise.

(3.44)

Let γ ∈ ]0,+∞[, set q∗ = q/(q − 1), set � = (α(1 − 1/q∗))q∗−1, and take η ∈ R and y ∈ G. If q∗γq∗−1η +
�‖y‖q∗ > γδ and y �= γv, let t be the unique solution in ]0,+∞[ to the equation

s2q∗−1 + q∗(η − γδ)
γ�

sq
∗−1 + q∗

�2 s−
q∗‖y − γv‖

γ�2 = 0 (3.45)

and set

p =

⎧⎨⎩v + t

‖y − γv‖ (y − γv), if y �= γv;

v, if y = γv.
(3.46)

Then

proxγg(η, y) =
{(

η + γ(�tq∗ − δ)/q∗, y − γp
)
, if q∗γq∗−1η + �‖y‖q∗ > γδ;(

0, 0
)
, if q∗γq∗−1η + �‖y‖q∗ � γδ.

(3.47)

Proof. This is a special case of Corollary 3.5 with φ = | · |q/α. Indeed, we derive from [1, Example 13.2(i) 
∗ q∗ ∗
and Proposition 13.20(i)] that φ = �| · | /q , which implies that (3.46)–(3.47) follow from (3.29). �
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Example 3.8. Let v ∈ G, let α ∈ ]0,+∞[, let δ ∈ R, and consider the function

g : R⊕ G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖y‖2

αη
+ δη + 〈y | v〉, if η > 0;

0, if y = 0 and η = 0;
+∞, otherwise.

(3.48)

We obtain a special case of Example 3.7 with q = q∗ = 2. Now let γ ∈ ]0,+∞[, and take η ∈ R and y ∈ G. 
If 4γη + α‖y‖2 � 2γδ, then proxγg(η, y) = (0, 0). Suppose that 4γη + α‖y‖2 > 2γδ. First, if y = γv, then 
proxγg(η, y) = (η − γδ/2, 0). Next, suppose that y �= γv and let t be the unique solution in ]0,+∞[ to the 
depressed cubic equation

s3 + 4α(η − γδ) + 8γ
α2γ

s− 8‖y − γv‖
α2γ

= 0. (3.49)

Then we derive from (3.46)–(3.47) that

proxγg(η, y) =
(
η + γ

2

(
αt2

2 − δ

)
,

(
1 − γt

‖y − γv‖

)
(y − γv)

)
. (3.50)

Note that (3.49) can be solved explicitly via Cardano’s formula [4, Chapter 4] to obtain t.

We conclude this subsection by investigating integral functions constructed from integrands that are 
perspective functions.

Proposition 3.9. Let (Ω, F, μ) be a measure space, let G be a separable real Hilbert space, and let ϕ ∈ Γ0(G). 
Set H = L2((Ω, F, μ); R) and G = L2((Ω, F, μ); G), and suppose that μ(Ω) < +∞ or ϕ � ϕ(0) = 0. For 
every x ∈ H, set Ω0(x) =

{
ω ∈ Ω

∣∣ x(ω) = 0
}

and Ω+(x) =
{
ω ∈ Ω

∣∣ x(ω) > 0
}
. Define

Φ: H⊕ G → ]−∞,+∞] : (x, y) �→⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω0(x)

(
recϕ

)(
y(ω)

)
μ(dω) +

∫
Ω+(x)

x(ω)ϕ
(
y(ω)
x(ω)

)
μ(dω),

if

⎧⎪⎨⎪⎩
x � 0 μ-a.e.
(recϕ)(y)1Ω0(x) + xϕ(y/x)1Ω+(x) ∈ L1((Ω,F , μ);R

)
;

+∞, otherwise.

(3.51)

Now let x ∈ H and y ∈ G, and set, for μ-almost every ω ∈ Ω, (p(ω), q(ω)) = proxϕ̃(x(ω), y(ω)). Then 
proxΦ(x, y) = (p, q).

Proof. Set z = (x, y). It follows from Lemma 2.32.3 that ϕ̃ ∈ Γ0(R ⊕ G), and [7, Proposition 5.1] asserts 
that Φ is a well-defined function in Γ0(R ⊕ G) with

Φ(z) =
∫
Ω

ϕ̃
(
z(ω)

)
μ(dω). (3.52)
Therefore, the result is obtained by applying Lemma 2.1 with K = R ⊕ G and K = H⊕ G. �
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Remark 3.10. Proposition 3.9 provides a general setting for computing the proximity operators of abstract 
integral functionals by reducing it to the computation of the proximity operator of the integrand. In par-
ticular, by suitably choosing the underlying measure space and the integrand, it provides a framework for 
computing the proximity operators of the integral function based on perspective functions discussed in [7], 
which include general divergences. For instance, discrete N -dimensional divergences are obtained by setting 
Ω = {1, . . . , N} and F = 2Ω, and letting μ be the counting measure (hence H = G = R

N ) and G = R. 
While completing the present paper, it has come to our attention that the computation of the proximity 
operators of discrete divergences has also been recently addressed in [13].

3.2. Further results

A convenient assumption in Theorem 3.1(ii) is that domϕ∗ is open, as it allowed us to rule out the case 
when

proxγϕ̃(η, y) = (0, q) and q �= 0, (3.53)

and to reduce (3.14) to (3.15) using (3.13). In general, (3.13) has the form Ndom h(π, p) = {0} ×Ndom ϕ∗p

and, if domϕ∗ is simple enough, explicit expressions can still be obtained. To shed more light on the case 
(3.53), consider the scenario in which q �= 0 and domϕ∗ is closed, and set p = (y − q)/γ. Then, in view of 
(2.14), (3.53) yields (η/γ, p) ∈ ∂ϕ̃(0, q). In turn, we derive from (2.23) that

ϕ∗(p) � −η/γ and σdom ϕ∗(q) = 〈p | q〉. (3.54)

Thus,

p ∈ domϕ∗ and (∀z ∈ domϕ∗) 〈z − p | y/γ − p〉 � 0, (3.55)

and we infer from (2.11) that p = Pdom ϕ∗(y/η). Therefore,

proxγϕ̃(η, y) =
(
0, y − γPdom ϕ∗(y/η)

)
=

(
0, y − Pγdom ϕ∗y

)
(3.56)

and we note that the condition q �= 0 means that y /∈ γ domϕ∗. We provide below examples in which domϕ∗

is a simple proper closed subset of G and the proximity operator of the perspective function of ϕ can be 
computed explicitly.

Example 3.11. Suppose that D �= {0} is a nonempty closed convex cone in G and define

ϕ = ϑ + ιD, where ϑ =
√

1 + ‖ · ‖2
G . (3.57)

Since domϑ = G, we have ϕ∗ = (ϑ + ιD)∗ = ϑ∗ � ιD� , where D	 is the polar cone of D and (combine 
[1, Examples 13.2(vi) and 13.7])

ϑ∗ : G → ]−∞,+∞] : u �→

⎧⎨⎩−
√

1 − ‖u‖2
G , if ‖u‖G � 1;

+∞, if ‖u‖G > 1.
(3.58)

Thus, domϕ∗ = dom (ϑ∗ � ιD�) = domϑ∗ + dom ιD� = B(0; 1) + D	 is closed as the sum of two closed 
convex sets, one of which is bounded. As a result, since D	 �= G,
domϕ∗ is a proper closed subset of G. (3.59)
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Now set K = R ⊕ G and K = [0,+∞[ × D, and let γ ∈ ]0,+∞[, η ∈ R, and y ∈ G. Then ‖(η, y)‖K =√
|η|2 + ‖y‖2

G and, as shown in [7, Example 3.5],

ϕ̃ = ‖ · ‖K + ιK . (3.60)

Hence, we derive from (2.19) that

proxγϕ̃(η, y) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0), if ‖PK(η, y)‖K � γ;(

1 − γ

‖PK(η, y)‖K

)
PK(η, y), if ‖PK(η, y)‖K > γ.

(3.61)

We thus obtain an explicit expression as soon as PK is explicit although domϕ∗ is not open. As an il-
lustration, let N � 2 be an integer, set G = R

N−1, let D = [0,+∞[N−1, and denote by ‖ · ‖N the usual 
N -dimensional Euclidean norm. Then ϕ =

√
1 + ‖ · ‖2

N−1 + ιD, K = [0,+∞[N , and (3.61) becomes

proxγϕ̃(η, y) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0), if ‖(η+, y+)‖N � γ;(

1 − γ

‖(η+, y+)‖N

)
(η+, y+), if ‖(η+, y+)‖N > γ,

(3.62)

where η+ = max{0, η} and y+ is defined likewise componentwise.

The second example provides the proximity operator of the perspective function of the Huber function.

Example 3.12 (perspective of the Huber function). Following [7, Example 3.2], let ρ ∈ ]0,+∞[ and consider 
the perspective function

ϕ̃ : R2 → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ|y| − ηρ2

2 , if |y| > ηρ and η > 0;
|y|2
2η , if |y| � ηρ and η > 0;

ρ|y|, if η = 0;
+∞, if η < 0

(3.63)

of the Huber function

ϕ : R → ]−∞,+∞] : y �→

⎧⎪⎪⎨⎪⎪⎩
ρ|y| − ρ2

2 , if |y| > ρ;

|y|2
2 , if |y| � ρ.

(3.64)

Then ϕ∗ = | · |2/2 + ι[−ρ,ρ] and domϕ∗ is therefore a proper closed subset of R. In addition, (3.10) yields

C =
{
(μ, u) ∈ ]−∞, 0] × [−ρ, ρ]

∣∣ μ + |u|2/2 � 0
}
. (3.65)

Now let η ∈ R, let y ∈ R, and set (χ, q) = proxγϕ̃(η, y). Then the following hold:

(i) If η + |y|2/(2γ) � 0 and |y| � γρ, then Theorem 3.13.1 yields (χ, q) = (0, 0).
(ii) We have χ = 0 ⇔ η/γ � −ρ2/2. Hence, if η � −γρ2/2 and |y| > γρ, (3.56) yields (χ, q) = (0, y −
P[−γρ,γρ]y) = (0, y − γρ sign(y)).
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(iii) If η > −γρ2/2 and |y| > ρη+γρ(1 +ρ2/2), then (η/γ, y/γ) ∈ (−ρ2/2, ρ sign(y)) +NC(−ρ2/2, ρ sign(y))
and therefore PC(η/γ, y/γ) = (−ρ2/2, ρ sign(y)). Hence, (3.11) yields (χ, q) = (η+γρ2/2, y−γρ sign(y)).

(iv) If η > −γρ2/2 and |y| � ρη + γρ(1 + ρ2/2), then (χ, q) = proxγ[|·|2/2]∼(η, y) is obtained by setting 
v = 0, δ = 0, and α = 2 in Example 3.8.

The last example concerns the Vapnik loss function.

Example 3.13 (perspective of the Vapnik function). Following [7, Example 3.4], let ε ∈ ]0,+∞[ and consider 
the perspective function

ϕ̃ : R2 → ]−∞,+∞] : (η, y) �→
{
d[−εη,εη](y), if η � 0;
+∞, if η < 0

(3.66)

of the Vapnik ε-insensitive loss function [28]

ϕ = max{| · | − ε, 0}. (3.67)

We have ϕ = d[−ε,ε] = ι[−ε,ε] � | · | and therefore ϕ∗ = ε| · | + ι[−1,1]. Furthermore, (3.10) becomes

C =
{
(μ, u) ∈ ]−∞, 0] × [−1, 1]

∣∣ μ + ε|u| � 0
}
. (3.68)

Now let η ∈ R, let y ∈ R, and set (χ, q) = proxγϕ̃(η, y). Then the following hold:

(i) If η + ε|y| � 0 and |y| � γ, then Theorem 3.13.1 yields (χ, q) = (0, 0).
(ii) We have χ = 0 ⇔ η/γ � −ε. Hence, if η � −γε and |y| > γ, (3.56) yields (χ, q) = (0, y − P[−γ,γ]y) =

(0, y − γ sign(y)).
(iii) If η > −γε and |y| > εη + γ(1 + ε2), then (η/γ, y/γ) ∈ (−ε, sign(y)) + NC(−ε, sign(y)) and therefore 

PC(η/γ, y/γ) = (−ε, sign(y)). Hence, (3.11) yields (χ, q) = (η + γε, y − γ sign(y)).
(iv) If |y| > −η/ε and εη � |y| � εη + γ(1 + ε2), then PC(η/γ, y/γ) coincides with the projection of 

(η/γ, y/γ) onto the half-space with outer normal vector (1, ε sign(y)) and which has the origin on its 
boundary. As a result, (3.11) yields (χ, q) = ((η + ε|y|)/(1 + ε2), ε(η + ε|y|)sign(y)/(1 + ε2)).

(v) If η � 0 and |y| � εη, then PC(η/γ, y/γ) = (0, 0) and (3.11) yields (χ, q) = (η, y).

4. Applications in high-dimensional statistics

Sections 2 and 3 provide a unifying framework to model a variety of problems around the notion of 
a perspective function. By applying the results of Section 3 in existing proximal algorithms, we obtain 
efficient methods to solve complex problems. To illustrate this point, we focus on a specific application area: 
high-dimensional regression in the statistical linear model.

4.1. Penalized linear regression

We consider the standard statistical linear model

z = Xb + σe, (4.1)

where z = (ζi)1�i�n ∈ R
n is the response, X ∈ R

n×p a design (or feature) matrix, b = (βj)1�j�p ∈ R
p a 

vector of regression coefficients, σ ∈ ]0,+∞[, and e = (εi)1�i�n the noise vector; each εi is the realization 

of a random variable with mean zero and variance 1. Henceforth, we denote by Xi: the ith row of X and 
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by X:j the jth column of X. In the high-dimensional setting where p > n, a typical assumption about the 
regression vector b is sparsity. In this scenario, the Lasso [27] has become a fundamental tool for variable 
selection and predictive modeling. It is based on solving the penalized least-squares problem

minimize
b∈R

p

1
2n‖Xb− z‖2

2 + λ‖b‖1, (4.2)

where λ ∈ [0,+∞[ is a regularization parameter that aims at controlling the sparsity of the solution. 
The Lasso has strong performance guarantees in terms of support recovery, estimation, and predictive 
performance if one takes λ ∝ σ‖X
e‖∞. In the high-dimensional setting, two shortcomings of the Lasso are 
the introduction of bias in the final estimates due to the �1 norm and lack of knowledge about the quantity 
σ which necessitates proper tuning of λ via model selection strategies that is dependent on σ. Bias reduction 
can be achieved by using a properly weighted �1 norm, resulting in the adaptive Lasso [30] formulation

minimize
b∈R

p

1
2n‖Xb− z‖2

2 + λ

p∑
j=1

wj |βj |, (4.3)

where the fixed weights wj ∈ ]0,+∞[ are estimated from data. In [30], it was shown that, for suitable choices 
of wj , the adaptive Lasso produces (asymptotically) unbiased estimates of b. One of the first methods to 
alleviate the σ-dependency of the Lasso has been the Sqrt-Lasso [2]. The Sqrt-Lasso problem is based on 
the formulation

minimize
b∈R

p

1
2‖Xb− z‖2 + λ‖b‖1. (4.4)

This optimization problem can be cast as second order cone program (SOCP) [2]. The modification of the 
objective function can be interpreted as an (implicit) scaling of the Lasso objective function by an estimate 
‖Xb − z‖2/

√
n of σ [19], leading to

minimize
b∈R

p

1
2
√
n

‖Xb− z‖2
2

1√
n
‖Xb− z‖2

+ λ‖b‖1. (4.5)

In [2], it was shown that the tuning parameter λ does not depend on σ in Sqrt-Lasso.
Alternative approaches rely on the idea of simultaneously and explicitly estimating b and σ from the data. 

The scaled Lasso [26], a robust hybrid of ridge and Lasso regression [23], and the TREX [19] are important 
instances. In the following, we will show that these estimators are based on perspective functions under the 
unifying statistical framework of concomitant estimation. We will introduce a novel family of estimators and 
show how the corresponding optimization problems can be solved using proximal algorithms. In particular, 
we will derive novel proximal algorithms for solving both the standard TREX and a novel generalized version 
of the TREX which includes the Sqrt-Lasso as special case.

4.2. Penalized concomitant M-estimators

In statistics, the task of simultaneously estimating a regression vector b and an additional model param-
eter is referred to as concomitant estimation. In [17], Huber introduced a generic method for formulating 
“maximum likelihood-type” estimators (or M-estimators) with a concomitant parameter from a convex cri-
terion. Using our perspective function framework, we can extend this framework and introduce the class of 

penalized concomitant M-estimators defined through the convex optimization problem
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minimize
σ∈R, τ∈R, b∈R

p

n∑
i=1

ϕ̃i

(
σ,Xi:b− ζi

)
+

p∑
j=1

ψ̃j

(
τ, a
j b

)
, (4.6)

with concomitant variables σ and τ under the assumptions outlined in Theorem 3.1 and in Section 3.2. 
Here, ϕi ∈ Γ0(R), ψj ∈ Γ0(R), and aj ∈ R

p. Moreover, (ϕ̃i)1≤i≤n are data fitting terms and (ψ̃j)1≤j≤p are 
penalty terms. A prominent instance of this family of estimators is the scaled Lasso [26] formulation

minimize
b∈R

p, σ∈]0,+∞[

1
2n

‖Xb− z‖2
2

σ
+ σ

2 + λ‖b‖1, (4.7)

which yields estimates equivalent to the Sqrt-Lasso. Here, setting ϕi = | · |2/(2n) + 1/2 and ψj = λ| · |
leads to the scaled (or concomitant) Lasso formulation (see Lemma 2.5, Corollary 3.5, and [21]). Other 
function choices result in well-known estimators. For instance, taking each ϕi to be the Huber function (see 
Example 3.12) and each ψj to be the Berhu (reversed Huber) function recovers the robust Lasso variant, 
introduced and discussed in [23]. Setting each ψj = λ|wj ·| to be a weighted �1 component results in the “Hu-
ber + adaptive Lasso” estimator, analyzed theoretically in [18]. Note that for the latter two approaches, no 
dedicated optimization algorithms exist that can solve the corresponding optimization problem with prov-
able convergence guarantees. Combining the proximity operators introduced here with proximal algorithms 
enables us to design such algorithms. To exemplify this powerful framework we focus next on a particular 
instance of a penalized concomitant M-estimator, the TREX estimator, and derive proximity operators and 
proximal algorithms.

4.3. Proximal algorithms for the TREX

The TREX [19] extends Sqrt-Lasso and scaled Lasso by taking into account the unknown noise distri-
bution of e. Recalling that a theoretically desirable tuning parameter for the Lasso is λ ∝ σ‖X
e‖∞, the 
TREX scales the Lasso objective by an estimate of this quantity, namely,

minimize
b∈R

p

‖Xb− z‖2
2

‖X
(Xb− z)‖∞
+ α‖b‖1. (4.8)

The parameter α > 0 can be set to a constant value (α = 1/2 being the default choice). In [19], promising 
statistical results were reported where an approximate version of the TREX, with no tuning of α, has been 
shown to be a valid alternative to the Lasso. A major technical challenge in the TREX formulation is the 
non-convexity of the optimization problem. In [3], this difficulty is overcome by showing that the TREX 
problem, although non-convex, can be solved by observing that problem (4.8) can be equivalently expressed 
as finding the best solution to 2p convex problems of the form

minimize
b∈R

p

x�
j (Xb−z)>0

‖Xb− z‖2
2

αx

j (Xb− z)

+ ‖b‖1, where xj = sX:j , with s ∈ {−1, 1}. (4.9)

Each subproblem can be reformulated as a standard SOCP and numerically solved using generic SOCP 
solvers [3]. Next we show how our perspective function approach allows us to derive proximal algorithms 
for not only the TREX subproblems and but also for novel generalized versions of the TREX. The proximal 
algorithms construct a sequence (bk)k∈N that is guaranteed to converge to a solution to (4.9).

4.3.1. Proximal operators for the TREX subproblem
We first note that the data fitting term of the TREX subproblem (4.9) is the special case of (2.25) where 

H = R
p, G = R

n, q = 2, L = X, r = z, u = X
xj , and ρ = x

j z. Given α ∈ ]0,+∞[, the data fitting term 
of the TREX subproblem thus assumes the form
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fj : Rp → ]−∞,+∞] : b �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖Xb− z‖2

2
αx


j (Xb− z)
, if x


j (Xb− z) > 0;

0, if Xb = z;
+∞, otherwise,

(4.10)

and the corresponding TREX subproblem is to

minimize
b∈R

p
fj(b) + ‖b‖1 . (4.11)

Now consider the linear transformation

Mj : Rp → R× R
n : b �→

(
x

j Xb,Xb

)
(4.12)

and introduce

gj : R× R
n → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖y − z‖2

2
α
(
η − x


j z
) , if η > x


j z;

0, if y = z and η = x

j z;

+∞, otherwise.

(4.13)

Then fj = gj ◦Mj . Upon setting h = ‖ · ‖1, we see that (4.11) is of the form

minimize
b∈R

p
gj(Mjb) + h(b). (4.14)

Next, we determine the proximity operators proxgj and proxh, as only those are needed in modern proximal 
splitting methods [8,11] to solve (4.14). The proximity operator proxh is the standard soft thresholding 
operator. A formula for proxgj is provided by Example 3.8 up to a shift by (x


j z, z). Let γ ∈ ]0,+∞[ and 
let g be as in (3.48). Combining Example 3.8 and [1, Proposition 23.29(ii)], we obtain, for every η ∈ R and 
every y ∈ R

n,

proxγgj (η, y) = (x

j z, z) + proxγgj

(
η − x


j z, y − z
)

=
{(

η + αγ‖p‖2
2/4, y − γp

)
, if 4γ(η − x


j z) + α‖y − z‖2
2 > 0;(

x

j z, z

)
, if 4γ(η − x


j z) + α‖y − z‖2
2 � 0,

(4.15)

where

p =

⎧⎨⎩
t

‖y − z‖ (y − z), if y �= z;

0, if y = z,
(4.16)

and where t is the unique solution in ]0,+∞[ to the depressed cubic equation

s3 +
4α(η − x


j z) + 8γ
α2γ

s− 8‖y − z‖
α2γ

= 0. (4.17)

4.3.2. Proximal operators for generalized TREX estimators
Thus far, we have shown that the data-fitting function in the TREX subproblem (4.9) is a special case 

of (2.25). However, the full potential of (2.25) is revealed by taking a general q ∈ ]1,+∞[, leading to the 

composite perspective function
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fj,q : Rp → ]−∞,+∞] : b �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖Xb− z‖q2

α
∣∣x


j (Xb− z)
∣∣q−1 , if x


j (Xb− z) > 0;

0, if Xb = z;
+∞, otherwise.

(4.18)

This function is the data fitting term of a generalized TREX subproblem for the corresponding global 
generalized TREX objective

minimize
b∈R

p

‖Xb− z‖q2
α‖X
(Xb− z)‖q−1

∞
+ ‖b‖1. (4.19)

This objective function provides a novel family of generalized TREX estimators, parameterized by q. The first 
important observation is that, in the limiting case q → 1, the generalized TREX estimator collapses to the 
Sqrt-Lasso (4.4). Secondly, particular choices of q allow very efficient computation of proximity operators 
for the generalized TREX subproblems. Considering the linear transformation Mj : Rp → R × R

n : b �→(
x

j Xb, Xb

)
and introducing

gj,q : R× R
n → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖y − z‖q2

α
∣∣η − x


j z
∣∣q−1 , if η > x


j z;

0, if y = z and η = x

j z;

+∞, otherwise,

(4.20)

we arrive at fj,q = gj,q ◦Mj . Setting h = ‖ · ‖1, the corresponding problem is to

minimize
b∈R

p
gj,q(Mjb) + h(b). (4.21)

The proximity operator proxgj,q is provided by Example 3.7, where δ = 0 and v = 0, up to a shift by 
(x


j z, z). Let g be the function in (3.44) and let γ ∈ ]0,+∞[. Set q∗ = q/(q − 1), set � = (α(1 − 1/q∗))q∗−1, 
and take (η, y) ∈ R × G. If q∗γq∗−1(η − x


j z) + �‖y − z‖q
∗

2 > 0 and y �= z, let t ∈ ]0,+∞[ be the unique 
solution to the polynomial equation

s2q∗−1 +
q∗(η − x


j z)
γ�

sq
∗−1 + q∗

�2 s−
q∗‖y − z‖

γ�2 = 0. (4.22)

Set

p =

⎧⎨⎩
t

‖y − z‖ (y − z), if y �= z;

0, if y = z.
(4.23)

Then we derive from Example 3.7 that

proxγgj,q (η, y) =
{(

η + γ�tq
∗
/q∗, y − γp

)
, if q∗γq∗−1(η − x


j z) + �‖y − z‖q
∗

2 > 0;(
x

j z, z

)
, if q∗γq∗−1(η − x


j z) + �‖y − z‖q
∗

2 � 0.
(4.24)

The key step in the calculation of the proximity operator is to solve (4.22) efficiently. The solution is 
explicit for q = 2, as discussed in Example 3.8. For q = 3, we obtain a quartic equation that can also be 
solved explicitly. For q ∈

{
(i + 1)/i

∣∣ i ∈ N, i � 2
}

(4.22) is a polynomial with integer exponents and is 
thus amenable to efficient root finding algorithms. For a general q, a one-dimensional line search for convex 

functions on a bounded interval needs to be performed.
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4.3.3. Douglas–Rachford for generalized TREX subproblems
Problem (4.14) is a standard composite problem and can be solved via several proximal splitting methods 

that require only the ability to compute proxgj and proxh; see [6] and references therein. For large scale 
problems, one could also employ recent algorithms that benefit from block-coordinate [11] or asynchronous 
block-iterative implementations [8], while still guaranteeing the convergence of their sequence (bk)k∈N of 
iterates to a solution to the problem. In this section, we focus on a simple implementation based on the 
Douglas–Rachford splitting method [1] in the context of the generalized TREX estimation to illustrate the 
applicability and versatility of the tools presented in Sections 2 and 3.

Define F : (b, c) �→ h(b) + gj,q(c) and G = ιV , where V is the graph of Mj, i.e., V =
{
(b, c) ∈ R

p × R
n+1

∣∣
Mjb = c

}
. Then we can rewrite (4.14) as

minimize
x=(b,c)∈R

p×R
n+1

F (x) + G(x) (4.25)

Let γ ∈ ]0,+∞[, let y0 ∈ R
p+n+1, and let (μk)k∈N be a sequence in ]0, 2[ such that infk∈N μk > 0 and 

supk∈N μk < 2. The Douglas–Rachford algorithm is

for k = 0, 1, . . .⎢⎢⎢⎢⎣ xk = proxγGyk

zk = proxγF (2xk − yk)
yk+1 = yk + μk(zk − xk).

(4.26)

The sequence (xk)k∈N is guaranteed to converge to a solution to (4.25) [1, Corollary 27.4]. Note that

proxF : (b, c) �→ (proxhb,proxgj,qc) (4.27)

and, in view of (2.15),

proxG : (b, c) �→ (v,Mjv), where v = b−M

j

(
Id + MjM



j

)−1(Mjb− c) (4.28)

is the projection operator onto V . Hence, upon setting Rj = M

j (Id +MjM



j )−1, xk = (bk, ck) ∈ R

p×R
n+1, 

yk = (xk, yk) ∈ R
p × R

n+1, and zk = (zk, tk) ∈ R
p × R

n+1, we can rewrite (4.26) as

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qk = Mjxk − yk
bk = xk −Rjqk
ck = Mjbk
zk = proxγh(2bk − xk)
tk = proxγgj,q (2ck − yk)
xk+1 = xk + μk(zk − bk)
yk+1 = yk + μk(tk − ck).

(4.29)

Then (bk)k∈N converges to a solution b to (4.14) or (4.21). Note that the matrix Rj needs to be precomputed 
only once by inverting a positive definite symmetric matrix.

4.4. Numerical illustrations

We illustrate the convergence behavior of the Douglas–Rachford algorithm for TREX problems and 

the statistical performance of generalized TREX estimators using numerical experiments. All presented 
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Fig. 1. Left panel: Average wall-clock time (seconds) versus dimension p for solving the TREX subproblems with Douglas–Rachford 
(DR), SCS, and DR-Sel (Douglas–Rachford with online sign selection). Right panel: Both plots show the first 40 variables of a 
typical p = 2000 TREX solution (top for s = +1). The m = 20 first indices are the non-zero indices in b∗. Insets show the TREX 
subproblem objective function values for s = ±1 and X:1, reached by Douglas–Rachford and SCS. DR-Sel selects the correct signed 
subproblem as verified a posteriori by the minimum function value (f(DR)

s=1,j=1 = 20.1410 versus f(DR)
s=−1,j=1 = 22.0451).

algorithms and experimental evaluations are implemented in MATLAB and are available at http :/ /github .
com /muellsen /TREX. All algorithms are run in MATLAB 2015a on a MacBook Pro with 2.8 GHz Intel 
Core i7 and 16 GB 1600 MHz DDR3 memory.

4.4.1. Evaluation of the Douglas–Rachford scheme on TREX subproblems
We first examine the scaling behavior of the Douglas–Rachford scheme for the TREX subproblem on 

linear regression tasks. We simulate synthetic data according to the linear model (4.1) with m = 20 nonzero 
variables, regression vector b∗ = [−1, 1, −1, . . . , 0
p−m]
, and feature vectors Xi: ∼ N(0, Σ) with Σii = 1 and 
Σij = 0.3, and Gaussian noise εi ∼ N(0, σ2) with σ = 1. Each column X:j is normalized to have norm

√
n. 

We fix the sample size n = 200 and consider the dimension p ∈ {20, 50, 100, 200, 500, 1000, 2000}. We solve 
one standard TREX subproblem (for s ∈ {−1, 1}, X:1, α = 0.5) over d = 20 random realizations of X and e. 
For the TREX subproblem we consider the proximal Douglas–Rachford Algorithm 4.29 with parameters 
μk ≡ 1.95 and γ = 70. We declare that the Douglas–Rachford algorithm has converged at iteration K if 
min{‖bK+1 − bK‖, ‖yK+1 − yK‖} � 10−10, resulting in the final estimate bK .

In practice, the Douglas–Rachford algorithm for the TREX subproblem can be enhanced by an online 
sign selection rule (DR-Sel). When a TREX subproblem for fixed X:j is considered, we can solve the problem 
for s ∈ {−1, 1} concurrently for a small number k0 of iterations (standard setting k0 = 50) and select the 
signed optimization problem with best progress in terms of objective function value.

We compare the run time scaling and solution quality of Douglas–Rachford and DR-Sel with those of the 
state-of-the-art Splitting Conic Solver (SCS). SCS is a general-purpose first-order proximal method that 
provides numerical solutions to several standard classes of optimization problems, including SOCPs and 
Semidefinite Programs (SDPs). We use SCS in indirect mode [22] to solve the SOCP formulation of the 
TREX subproblem [3] with convergence tolerance 10−4.

The run time scaling results are shown in Fig. 1. We emphasize that the scaling experiments are not meant 
to measure absolute algorithmic performance but rather efficiency with respect to optimization formulations 
that are subsequently solved by proximal algorithms. We observe that SCS with the SOCP formulation of 
TREX compares favorably with Douglas–Rachford and DR-Sel in low dimensions while, for p > 200, both 
Douglas–Rachford variants perform better. DR-Sel outperforms Douglas–Rachford by a factor of 2 to 4 and 
always selects the correct signed subproblem (data not shown). The TREX solutions found by SCS and 

Douglas–Rachford are close in terms of ‖b(DR) − b(SCS)‖, with DR typically reaching slightly lower function 
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Fig. 2. Top row: Probability (and standard error) of exact support recovery versus rescaled sample size θ(n, p, m) for generalized 
TREX with q ∈ {1, 9/8, 7/6, 3/2, 2}; top right panel: Average Hamming distance to true support. Bottom row: Mean estimation 
error ‖bK − b∗‖2

2/n (left panel) and mean prediction error ‖XbK − Xb∗‖2
2/n (right panel).

values than SCS. Values for the first 40 dimensions of a typical solution bK in p = 2000 dimensions are 
shown in Fig. 1 (right panels).

4.4.2. Behavior of generalized TREX estimators
We next study the effect of the exponent q on the statistical behavior of the generalized TREX estimator. 

We use the synthetic setting outlined in [29] to study the phase transition behavior of the different generalized 
TREX estimators. We generate data from the linear model (4.1) with p = 64 and m = �0.4p3/4� nonzero 
variables, regression vector b∗ = [−1, 1, −1, . . . , 0
p−m]
, and feature vectors Xi: ∼ N(0, Σ) with Σii = 1
and Σij = 0 and Gaussian noise e with σ = 0.5. Each column X:j is normalized to have norm 

√
n. We 

define the rescaled sample size according to θ(n, p, m) = n/(2m log (p−m)) and consider θ(n, p, m) ∈
{0.2, 0.4, . . . , 1.6}. At θ(n, p, m) = 1, the probability of exact recovery of the support of b∗ is 0.5 for the 
(Sqrt)-Lasso with oracle regularization parameter [29]. We consider the generalized TREX with different 
exponents q ∈ {9/8, 7/6, 3/2, 2} and the Sqrt-Lasso as limiting case q = 1. For all generalized TREX 
estimators we consider regularization parameters α ∈ {0.1, 0.15, . . . , 2}. For Sqrt-Lasso we consider the 
standard regularization path setting outlined in [21]. We solve all generalized TREX problems with the 
Douglas–Rachford scheme using the previously described parameter and convergence settings. We measure 
the probability of exact support recovery and Hamming distance to the true support over d = 12 repetitions. 

We threshold all “numerical zeros” in the generalized TREX solutions vectors at level 0.05. For all solutions 
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closest to the true support in terms of Hamming distance, we also calculate estimation error ‖bK − b∗‖2
2/n

and prediction error ‖XbK −Xb∗‖2
2/n. Fig. 2 shows average performance results across all repetitions. We 

observe several interesting phenomena for the family of generalized TREX estimators. In terms of exact 
recovery, the performance is slightly better than predicted by theory (see gray dashed line in Fig. 2 top 
left panel), with decrease in performance for increasing q. This is also consistent with average Hamming 
distance measurements (top right panel). We observe that generalized TREX oracle solutions (according to 
the minimum Hamming distance criterion) show best performance in terms of estimation and prediction 
error for exponents q ∈ {9/8, 7/6}, followed by q ∈ {3/2, 2}.

The present numerical experiments highlight the usefulness of the family of generalized TREX estimators 
for sparse linear regression problems. Further theoretical research is needed to derive asymptotic properties 
of generalized TREX. A central prerequisite for establishing generalized TREX as statistical estimator is to 
solve the underlying optimization problem with provable guarantees. We have shown that our perspective 
function framework along with efficient computation of proximity operators enables this important task in 
a seamless way.
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