
 

4. DESIGN AND ANALYSIS OF EXPERIMENTS 

Planning an experiment to obtain appropriate data and drawing inference out of the data with 
respect to any problem under investigation is known as design and analysis of experiments. 
This might range anywhere from the formulations of the objectives of the experiment in clear 
terms to the final stage of the drafting reports incorporating the important findings of the enquiry. 
The structuring of the dependent and independent variables, the choice of their levels in the 
experiment, the type of experimental material to be used, the method of the manipulation of the 
variables on the experimental material, the method of recording and tabulation of data, the 
mode of analysis of the material, the method of drawing sound and valid inference etc. are all 
intermediary details that go with the design and analysis of an experiment. 

4.1 Principles of experimentation 

Almost all experiments involve the three basic principles, viz., randomization, replication and 
local control. These three principles are, in a way, complementary to each other in trying to 
increase the accuracy of the experiment and to provide a valid test of significance, retaining at 
the same time the distinctive features of their roles in any experiment. Before we actually go into 
the details of these three principles, it would be useful to understand certain generic terms in the 
theory experimental designs and also understand the nature of variation among observations in 
an experiment. 

Before conducting an experiment, an experimental unit is to be defined. For example, a leaf, a 
tree or a collection of adjacent trees may be an experimental unit. An experimental unit is also 
sometimes referred as plot. A collection of plots is termed a block. Observations made on 
experimental units vary considerably. These variations are partly produced by the manipulation 
of certain variables of interest generally called treatments, built-in and manipulated deliberately 
in the experiment to study their influences. For instance, clones in clonal trials, levels and kinds 
of fertilizers in fertilizer trials etc. can be called treatments. Besides the variations produced in 
the observations due to these known sources, the variations are also produced by a large 
number of unknown sources such as uncontrolled variation in extraneous factors related to the 
environment, genetic variations in the experimental material other than that due to treatments, 
etc. They are there, unavoidable and inherent in the very process of experimentation. These 
variations because of their undesirable influences are called experimental error thereby 
meaning not an arithmetical error but variations produced by a set of unknown factors beyond 
the control of the experimenter. 

It is further interesting to note that these errors introduced into the experimental observations by 
extraneous factors may be either systematic or random in their mode of incidence. The errors 
arising due to an equipment like a spring balance which goes out of calibration due to continued 
use or the error due to observer’s fatigue are examples of systematic error. On the other hand, 
the unpredictable variation in the amount of leaves collected in litter traps under a particular 
treatment in a related experiment is random in nature. It is clear that any number of repeated 
measurements would not overcome systematic error where as it is very likely that the random 
errors would cancel out with repeated measurements. The three basic principle viz., 
randomization, replication and local control are devices to avoid the systematic error and to 
control the random error. 



4.1.1. Randomization 

Assigning the treatments or factors to be tested to the experimental units according to definite 
laws or probability is technically known as randomization. It is the randomization in its strict 
technical sense, that guarantees the elimination of systematic error. It further ensures that 
whatever error component that still persists in the observations is purely random in nature. This 
provides a basis for making a valid estimate of random fluctuations which is so essential in 
testing of significance of genuine differences. 

Through randomization, every experimental unit will have the same chance of receiving any 
treatment. If, for instance, there are five clones of eucalyptus to be tried in say 25 plots, 
randomization ensures that certain clones will not be favoured or handicapped by extraneous 
sources of variation over which the experimenter has no control or over which he chooses not to 
exercise his control. The process of random allocation may be done in several ways, either by 
drawing lots or by drawing numbers from a page of random numbers, the page itself being 
selected at random. The method is illustrated in later sections dealing with individual forms of 
experimental designs. 

Replication 

Replication is the repetition of experiment under identical conditions but in the context of 
experimental designs, it refers to the number of distinct experimental units under the same 
treatment. Replication, with randomization, will provide a basis for estimating the error variance. 
In the absence of randomization, any amount of replication may not lead to a true estimate of 
error. The greater the number of replications, greater is the precision in the experiment. 

The number of replications to be included in any experiment depends upon many factors like 
the homogeneity of experimental material, the number of treatments, the degree of precision 
required etc. As a rough rule, it may be stated that the number of replications in a design should 
provide at least 10 to 15 degrees of freedom for computing the experimental error variance. 

4.1.3. Local control 

Local control means the control of all factors except the ones about which we are investigating. 
Local control, like replication is yet another device to reduce or control the variation due to 
extraneous factors and increase the precision of the experiment. If, for instance, an 
experimental field is heterogeneous with respect of soil fertility, then the field can be divided into 
smaller blocks such that plots within each block tend to be more homogeneous. This kind of 
homogeneity of plots (experiment units) ensures an unbiased comparison of treatment means, 
as otherwise it would be difficult to attribute the mean difference between two treatments solely 
to differences between treatments when the plot differences also persist. This type of local 
control to achieve homogeneity of experimental units, will not only increase the accuracy of the 
experiment, but also help in arriving at valid conclusions. 

In short, it may be mentioned that while randomization is a method of eliminating a systematic 
error (i.e., bias) in allocation thereby leaving only random error component of variation, the other 
two viz., replication and local control try to keep this random error as low as possible. All the 
three however are essential for making a valid estimate of error variance and to provide a valid 
test of significance. 



  

4.2. Completely randomized design 

A completely randomized design (CRD) is one where the treatments are assigned completely at 
random so that each experimental unit has the same chance of receiving any one treatment. 
For the CRD, any difference among experimental units receiving the same treatment is 
considered as experimental error. Hence, CRD is appropriate only for experiments with 
homogeneous experimental units, such as laboratory experiments, where environmental effects 
are relatively easy to control. For field experiments, where there is generally large variation 
among experimental plots in such environmental factors as soil, the CRD is rarely used. 

4.2.1. Layout 

The step-by-step procedure for randomization and layout of a CRD are given here for a pot 
culture experiment with four treatments A, B, C and D, each replicated five times. 

Step 1. Determine the total number of experimental plots (n) as the product of the number of 
treatments (t) and the number of replications (r); that is, n = rt. For our example, n = 5 x 4 = 20. 
Here, one pot with a single plant in it may be called a plot. In case the number of replications is 
not the same for all the treatments, the total number of experimental pots is to be obtained as 
the sum of the replications for each treatment. i.e., 

 where ri is the number of times the ith treatment replicated 

Step 2. Assign a plot number to each experimental plot in any convenient manner; for example, 
consecutively from 1 to n. 

Step 3. Assign the treatments to the experimental plots randomly using a table of random 
numbers as follows. Locate a starting point in a table of random numbers (Appendix 6) by 
closing your eyes and pointing a finger to any position in a page. For our example, the starting 
point is taken at the intersection of the sixth row and the twelfth (single) column of two-digit 
numbers. Using the starting point obtained, read downward vertically to obtain n = 20 distinct 
two-digit random numbers. For our example, starting at the intersection of the sixth row and the 
twelfth column, the 20 distinct two-digit random numbers are as shown here together with their 
corresponding sequence of appearance. 

Random number : 37, 80, 76, 02, 65, 27, 54, 77, 48, 73, 

Sequence : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

Random number : 86, 30, 67, 05, 50, 31, 04, 18, 41, 89 

Sequence : 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 

Rank the n random numbers obtained in ascending or descending order. For our example, the 
20 random numbers are ranked from the smallest to the largest, as shown in the following: 



Random 
Number 

Sequence Rank Random 
Number 

Sequence Rank 

37 1 8 86 11 19 

80 2 18 30 12 6 

76 3 16 67 13 14 

02 4 1 05 14 3 

65 5 13 50 15 11 

27 6 5 31 16 7 

54 7 12 04 17 2 

77 8 17 18 18 4 

48 9 10 41 19 9 

73 10 15 89 20 20 

Divide the n ranks derived into t groups, each consisting of r numbers, according to the 
sequence in which the random numbers appeared. For our example, the 20 ranks are divided 
into four groups, each consisting of five numbers, as follows: 

Group Number Ranks in the Group 

1 8 13 10 14 2 

2 18 5 15 3 4 

3 16 12 19 11 9 

4 1 17 6 7 20 

Assign the t treatments to the n experimental plots, by using the group number as the treatment 
number and the corresponding ranks in each group as the plot number in which the 
corresponding treatment is to be assigned. For our example, the first group is assigned to 
treatment A and plots numbered 8, 13, 10, 14 and 2 are assigned to receive this treatment; the 
second group is assigned to treatment B with plots numbered 18, 5, 15, 3 and 4; the third group 
is assigned to treatment C with plots numbered 16, 12, 19, 11 and 9; and the fourth group to 
treatment D with plots numbered 1, 17, 6, 7 and 20. The final layout of the experiment is shown 
Figure 4.1. 
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Figure 4.1. A sample layout of a completely randomised design with four treatments (A, B, C 
and D) each replicated five times 

4.2.2. Analysis of variance 

There are two sources of variation among the n observations obtained from a CRD trial. One is 
the variation due to treatments, the other is experimental error. The relative size of the two is 
used to indicate whether the observed difference among treatments is real or is due to chance. 
The treatment difference is said to be real if treatment variation is sufficiently larger than 
experimental error. 

A major advantage of the CRD is the simplicity in the computation of its analysis of variance, 
especially when the number of replications is not uniform for all treatments. For most other 
designs, the analysis of variance becomes complicated when the loss of data in some plots 
results in unequal replications among the treatments tested. 

The steps involved in the analysis of variance for data from a CRD experiment with unequal 
number of replications are given below. The formulae are easily adaptable to the case of equal 
replications and hence not shown separately. For illustration, data from a laboratory experiment 
are used, in which observations were made on mycelial growth of different Rizoctonia 
solani isolates on PDA medium (Table 4.1). 

Step 1. Group the data by treatments and calculate the treatment totals (Ti) and grand total (G). 
For our example, the results are shown in Table 4.1 itself. 

Step 2. Construct an outline of ANOVA table as in Table 4.2. 

  

Table 4.1. Mycelial growth in terms of diameter of the colony (mm) of R. solani isolates on PDA 
medium after 14 hours of incubation. 



R. 
solani isolates 

Mycelial growth Treatment 
total 

Treatment 
mean 

  Repl. 1 Repl. 2 Repl. 3 (Ti)   

RS 1 29.0 28.0 29.0 86.0 28.67 

RS 2 33.5 31.5 29.0 94.0 31.33 

RS 3 26.5 30.0   56.5 28.25 

RS 4 48.5 46.5 49.0 144.0 48.00 

RS 5 34.5 31.0   65.5 32.72 

Grand total       446.0   

Grand mean         34.31 

Table 4.2. Schematic representation of ANOVA of CRD with unequal replications. 

Source of 
variation 

Degree of 
freedom 

(df) 

Sum of squares 

(SS) 

Mean square 

 

Computed F 

Treatment t - 1 SST MST 

 

Error n - t SSE MSE   

Total n - 1 SSTO     

Step 3.With the treatment totals (Ti) and the grand total (G) of Table 4.1, compute the correction 
factor and the various sums of squares, as follows. Let yij represent the observation on the jth 
PDA medium belonging to the ith isolate; i = 1, 2, …, t ; j = 1, 2, …, ri.. 

 (4.1) 

 

= 15301.23 



 (4.2) 

=  

= 789.27 

SST =  (4.3) 

=  

= 762.69 

SSE = SSTO - SST (4.4) 

= 789.27 - 762.69 = 26.58 

Step 4. Enter all the values of sums of squares in the ANOVA table and compute the mean 
squares and F value as shown in the Table 4.2. 

Step 5. Obtain the tabular F values from Appendix 3, with f1 and f2 degrees of freedom 
where f1 = treatment df = (t - 1) and f2 = error df = (n - t), respectively. For our example, the 
tabular F value with f1 = 4 and f2 = 8 degrees of freedom is 3.84 at 5% level of significance. The 
above results are shown in Table 4.3. 

Table 4.3. ANOVA of mycelial growth data of Table 4.1. 

Source of 
variation 

Degree of 
freedom 

Sum of 
squares 

Mean 
square 

Computed F Tabular F 5% 

Treatment 4 762.69 190.67 57.38* 3.84 

Error 8 26.58 3.32 
  

Total 12 789.27 
   

* Significant at 5% level 

Step 7. Compare the computed F value of Step 4 with the tabular F value of Step 5, and decide 
on the significance of the difference among treatments using the following rules: 

(i) If the computed F value is larger than the tabular F value at 5% level of significance, the 
variation due to treatments is said to be significant. Such a result is generally indicated by 
placing an asterisk on the computed F value in the analysis of variance. 



(ii) If the computed F value is smaller than or equal to the tabular F value at 5% level of 
significance, the variation due to treatments is said to be nonsignificant. Such a result is 
indicated by placing ns on the computed F value in the analysis of variance or by leaving 
the F value without any such marking. 

Note that a nonsignificant F in the analysis of variance indicates the failure of the experiment to 
detect any differences among treatments. It does not, in any way, prove that all treatments are 
the same, because the failure to detect treatment differences based on the nonsignificant F test, 
could be the result of either a very small or no difference among the treatments or due to large 
experimental error, or both. Thus, whenever the F test is nonsignificant, the researcher should 
examine the size of the experimental error and the numerical differences among the treatment 
means. If both values are large, the trial may be repeated and efforts made to reduce the 
experimental error so that the differences among treatments, if any, can be detected. On the 
other hand, if both values are small, the differences among treatments are probably too small to 
be of any economic value and, thus, no additional trials are needed. 

For our example, the computed F value of 57.38 is larger than the tabular F value of 3.84 at the 
5% level of significance. Hence, the treatment differences are said to be significant. In other 
words, chances are less than 5 in 100 that all the observed differences among the five 
treatment means could be due to chance. It should be noted that such a significant F test 
verifies the existence of some differences among the treatments tested but does not specify the 
particular pair (or pairs) of treatments that differ significantly. To obtain this information, 
procedures for comparing treatment means, discussed in Section 4.2.3. are needed. 

Step 8. Compute the grand mean and the coefficient of variation (cv) as follows: 

Grand mean =  (4.5) 

cv =  (4.6) 

For our example, 

Grand mean =  

cv =  

The cv affects the degree of precision with which the treatments are compared and is a good 
index of the reliability of the experiment. It is an expression of the overall experimental error as 
percentage of the overall mean; thus, the higher the cv value, the lower is the reliability of the 
experiment. The cv varies greatly with the type of experiment, the crop grown, and the 
characters measured. An experienced researcher, however, can make a reasonably good 
judgement on the acceptability of a particular cv value for a given type of experiment. 
Experimental results having a cv value of more than 30 % are to be viewed with caution. 



4.2.3. Comparison of treatments 

One of the most commonly used test procedures for pair comparisons in forestry research is the 
least significant difference (LSD) test. Other test procedures, such as Duncan’s multiple range 
test (DMRT), the honestly significant difference (HSD) test and the Student-Newman-Keuls 
range test, can be found in Gomez and Gomez (1980), Steel and Torrie (1980) and Snedecor 
and Cochran (1980). The LSD test is described in the following. 

The LSD test is the simplest of the procedures for making pair comparisons. The procedure 
provides for a single LSD value, at a prescribed level of significance, which serves as the 
boundary between significant and nonsignificant difference between any pair of treatment 
means. That is, two treatments are declared significantly different at a prescribed level of 
significance if their difference exceeds the computed LSD value, otherwise they are not 
considered significantly different. 

The LSD test is most appropriate for making planned pair comparisons but, strictly speaking, is 
not valid for comparing all possible pairs of means, especially when the number of treatments is 
large. This is so because the number of possible pairs of treatment means increases rapidly as 
the number of treatments increases. The probability that, due to chance alone, at least one pair 
will have a difference that exceeds the LSD value increases with the number of treatments 
being tested. For example, in experiments where no real difference exists among all treatments, 
it can be shown that the numerical difference between the largest and the smallest treatment 
means is expected to exceed the LSD value at the 5% level of significance 29% of the time 
when 5 treatments are involved, 63% of the time when 10 treatments are involved and 83% of 
the time when 15 treatments are involved. Thus one must avoid use of the LSD test for 
comparisons of all possible pairs of means. If the LSD test must be used, apply it only when 
the F test for treatment effect is significant and the number of treatments is not too large, say, 
less than six. 

The procedure for applying the LSD test to compare any two treatments, say the ith and the jth 
treatments, involves the following steps: 

Step 1. Compute the mean difference between the ith and the jth treatment as: 

 (4.7) 

where  are the means of the ith and the jth treatments. 

Step 2. Compute the LSD value at level of significance as: 

 (4.8) 

where  is the standard error of the mean difference and is the Student’s t value, from 
Appendix 2, at  l evel of significance and with v = Degrees of freedom for error. 



Step 3. Compare the mean difference computed in Step 1 with the LSD value computed in Step 
2 and declare the ith and jth treatments to be significantly different at the  level of significance, 

if the absolute value of  is greater than the LSD value. 

In applying the foregoing procedure, it is important that the appropriate standard error of the 

mean difference ( )for the treatment pair being compared is identified. This task is affected by 
the experimental design used, the number of replications of the two treatments being compared, 
and the specific type of means to be compared. In the case of CRD, when the two treatments 

do not have the same number of replications, is computed as: 

 (4.9) 

where ri and rj are the number of replications of the ith and the jth treatments and s2 is the error 
mean square in the analysis of variance. 

As an example, use the data from Table 4.1. The researcher wants to compare the five isolates 
of R. solani, with respect to the mycelial growth on PDA medium. The steps involved in applying 
the LSD test would be the following. 

Step 1. Compute the mean difference between each pair of treatments (isolates) as shown in 
Table 4.4. 

Step 2. Compute the LSD value at a level of significance. Because some treatments have three 
replications and others have two, three sets of LSD values must be computed. 

For comparing two treatments each having three replications, compute the LSD value as 
follows. 

 

where the value of s2 = 3.32 is obtained from Table 4.3 and the Student’s t value of 2.31 for 8 
degrees of freedom at 5% level is obtained from Appendix 2. 

For comparing two treatments each having three replications, compute the LSD value as 
follows. 

 

For comparing two treatments one having two replications and the other having three 
replications, the LSD value is, 



 

= 3.84 mm 

Step 3. Compare difference between each pair of treatments computed in Step 1 to the 
corresponding LSD values computed in Step 2 and place the appropriate asterisk notation. For 
example, the mean difference between the first treatment (with three replications) and the 
second treatment (with three replications) is 2.66 mm. Since the mean difference is less than 
the corresponding LSD value of 3.44 mm it is declared to be nonsignificant at 5% level of 
significance. On the other hand, the mean difference between the first treatment (with three 
replications) and the second treatment (with two replications) is, 4.05 mm. Since the mean 
difference is higher than the corresponding LSD value of 3.84, it is declared to be significant at 
the 5% level and is indicated with asterisks. The test results for all pairs of treatments are given 
in Table 4.4. 

Table 4.4. Comparison between mean diameter (mm) of each pair of treatments using the LSD 
test with unequal replications, for data in Table 4.1. 

Treatment RS 1 RS 2 RS 3 RS 4 RS 5 

RS 1 0.00 2.66 

(3.44) 

0.42 

(3.84) 

19.33* 

(3.44) 

4.05* 

(3.84) 

RS 2   0.00 3.08 

(3.84) 

16.67* 

(3.44) 

1.39 

(3.84) 

RS 3     0.00 19.75* 

(3.84) 

4.47* 

(4.21) 

RS 4       0.00 15.28* 

(3.84) 

RS 5         0.00 

* Significant at 5% level 

Note: The values in the parenthesis are LSD values 

Before leaving this section, one point useful in deciding the number of replications required in an 
experiment for achieving reasonable level of reliability is mentioned here. As indicated earlier, 
one thumb rule is to take that many replications which will make the error degrees of freedom 
around 12. The idea behind this rule is that critical values derived from some of the distributions 
like Student’s t or F almost stabilize after 12 degrees of freedom thereby providing some extent 
of stability to the conclusions drawn from such experiments. For instance, if one were to plan a 
CRD with equal replications for t treatments, one would equate the error df of t(r-1) to 12 and 



solve for r for known values of t. Similar strategies can be followed for many other designs also 
that are explained in later sections. 

  

4.3. Randomized complete block design 

The randomized complete block design (RCBD) is one of the most widely used experimental 
designs in forestry research. The design is especially suited for field experiments where the 
number of treatments is not large and there exists a conspicuous factor based on which 
homogenous sets of experimental units can be identified. The primary distinguishing feature of 
the RCBD is the presence of blocks of equal size, each of which contains all the treatments. 

4.3.1 Blocking technique 

The purpose of blocking is to reduce the experimental error by eliminating the contribution of 
known sources of variation among the experimental units. This is done by grouping the 
experimental units into blocks such that variability within each block is minimized and variability 
among blocks is maximized. Since only the variation within a block becomes part of the 
experimental error, blocking is most effective when the experimental area has a predictable 
pattern of variability. 

An ideal source of variation to use as the basis for blocking is one that is large and highly 
predictable. An example is soil heterogeneity, in a fertilizer or provenance trial where yield data 
is the primary character of interest. In the case of such experiments, after identifying the specific 
source of variability to be used as the basis for blocking, the size and the shape of blocks must 
be selected to maximize variability among blocks. The guidelines for this decision are (i) When 
the gradient is unidirectional (i.e., there is only one gradient), use long and narrow blocks. 
Furthermore, orient these blocks so that their length is perpendicular to the direction of the 
gradient. (ii) When the fertility gradient occurs in two directions with one gradient much stronger 
than the other, ignore the weaker gradient and follow the preceding guideline for the case of the 
unidirectional gradient. (iii) When the fertility gradient occurs in two directions with both 
gradients equally strong and perpendicular to each other, use blocks that are as square as 
possible or choose other designs like latin square design (Gomez and Gomez, 1980). 

Whenever blocking is used, the identity of the blocks and the purpose for their use must be 
consistent throughout the experiment. That is, whenever a source of variation exists that is 
beyond the control of the researcher, it should be ensured that such variation occurs among 
blocks rather than within blocks. For example, if certain operations such as application of 
insecticides or data collection cannot be completed for the whole experiment in one day, the 
task should be completed for all plots of the same block on the same day. In this way, variation 
among days (which may be enhanced by weather factors) becomes a part of block variation and 
is, thus, excluded from the experimental error. If more than one observer is to make 
measurements in the trial, the same observer should be assigned to make measurements for all 
plots of the same block. This way, the variation among observers if any, would constitute a part 
of block variation instead of the experimental error. 

4.3.2. Layout 



The randomization process for a RCBD is applied separately and independently to each of the 
blocks. The procedure is illustrated for the case of a field experiment with six treatments A, B, C, 
D, E, F and three replications. 

Step1. Divide the experimental area into r equal blocks, where r is the number of replications, 
following the blocking technique described in Section 4.3.1. For our example, the experimental 
area is divided into three blocks as shown in Figure 4.2. Assuming that there is a unidirectional 
fertility gradient along the length of the experimental field, block shape is made rectangular and 
perpendicular to the direction of the gradient. 
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Block I   Block II   Block III 

Figure 4.2. Division of an experimental area into three blocks, each consisting of six plots, for a 
randomized complete block design with six treatments and three replications. Blocking is done 
such that blocks are rectangular and perpendicular to the direction of the unidirectional gradient 
(indicated by the arrow). 

Step2. Subdivide the first block into t experimental plots, where t is the number of treatments. 
Number the t plots consecutively from 1 to t, and assign t treatments at random to the t plots 
following any of the randomization schemes for the CRD described in Section 4.2.1. For our 
example, block I is subdivided into six equisized plots, which are numbered consecutively from 
top to bottom. (Figure 4.3) and the six treatments are assigned at random to the six plots using 
the table of random numbers as follows: 

1 
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3 

F 
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B 

6 

A 

Block I 

Figure 4.3. Plot numbering and random assignment of six treatments (A, B, C, D, E, and F) to 
the six plots of Block I. 

Step 3. Repeat Step 2 completely for each of the remaining blocks. For our example, the final 
layout is shown in Figure 4.4. 

1   7   13 

C   A   F 

2   8   14 

D   E   D 

3   9   15 

F   F   C 

4   10   16 

E   C   A 

5   11   17 

B   D   B 

6   12   18 

A   B   E 

Block I   Block II   Block III 

Figure 4.4. A sample layout of a randomized complete block design with six treatments (A, B, C, 
D, E and F) and three replications. 

4.3.3. Analysis of variance 



There are three sources of variability in a RCBD : treatment, replication (or block) and 
experimental error. Note that this is one more than that for a CRD, because of the addition of 
replication, which c orresponds to the variability among blocks. 

To illustrate the steps involved in the analysis of variance for data from a RCBD, data from an 
experiment is made use of, wherein eight provenances of Gmelina arborea were compared with 
respect to the girth at breast-height (gbh) of the trees attained since 6 years of planting (Table 
4.5). 

Table 4.5. Mean gbh (cm) of trees in plots of provenances of Gmelina arborea, 6 years after 
planting, in a field experiment laid out under RCBD. 

Treatment 
(Provenance) 

Replication Treatment 
total 

Treatment 
mean 

  I II III (Ti) 
 

1 30.85 38.01 35.10 103.96 34.65 

2 30.24 28.43 35.93 94.60 31.53 

3 30.94 31.64 34.95 97.53 32.51 

4 29.89 29.12 36.75 95.76 31.92 

5 21.52 24.07 20.76 66.35 22.12 

6 25.38 32.14 32.19 89.71 29.90 

7 22.89 19.66 26.92 69.47 23.16 

8 29.44 24.95 37.99 92.38 30.79 

Rep. total (Rj) 221.15 228.02 260.59     

Grand total (G) 
Grand mean 

      709.76 29.57 

Step 1. Group the data by treatments and replications and calculate treatment totals (Ti), 
replication totals (Rj) and grand total (G), as shown in Table 4.5. 

Step 2. Construct the outline of the analysis of variance as follows: 

Table 4.6. Schematic representation of ANOVA of RCBD 

Source of 
variation 

Degree of 
freedom 

(df) 

Sum of 
squares 

(SS) 

Mean square 

 

Computed F 



Replication r - 1 SSR MSR   

Treatment t - 1 SST MST MST/MSE 

Error (r - 1)(t - 1) SSE MSE   

Total rt - 1 SSTO     

Step 3. Compute the correction factor and the various sums of squares (SS) given in the above 
table as follows. Let yij represent the observation made from jth block on the ith treatment; i = 
1,…,t ; j = 1,…,r. 

C F =  (4.10) 

=  

SSTO =  (4.11) 

=  

= 678.42 

SSR =  (4.12) 

=  20989.97 

= 110.98 

SST =  (4.13) 

=  



= 426.45 

SSE = SSTO - SSR - SST (4.14) 

= 678.42 - 110.98 - 426.45 = 140.98 

Step 4. Using the values of sums of squares obtained, compute the mean square and 
the F value for testing the treatment differences as shown in the Table 4.6. The results are 
shown in Table 4.7. 

Table 4.7 ANOVA of gbh data in Table 4.5. 

Source of Degree of Sum of Mean Computed Tabular F 

variation freedom Squares Square F 5% 

Replication 2 110.98 55.49 
  

Treatment 7 426.45 60.92 6.05* 2.76 

Error 14 140.98 10.07     

Total 23 678.42       

*Significant at 5% level 

Step 5. Obtain the tabular F values from Appendix 3, for f1 = treatment df and f2 = error df. For 
our example, the tabular F value for f1 = 7 and f2 = 14 degrees of freedom is 2.76 at the 5% level 
of significance. 

Step 6. Compare the computed F value of step 4 with the tabular F values of step 5, and decide 
on the significance of the differences among treatments. Because the computed F value of 6.05 
is greater than the tabular F value at the 5% level of significance, we conclude that the 
experiment shows evidence the existence of significant differences among the provenances 
with respect to their growth in terms gbh. 

Step 7. Compute the coefficient of variation as: 

 (4.15) 

=  

The relatively low value of cv indicates the reasonable level of precision attained in the field 
experiment. 

4.3.4. Comparison of treatments 



The treatment means are compared as illustrated for the case of CRD in Section 4.2.3. using 
the formulae, 

 (4.16) 

where s-d is the standard error of the difference between treatment means and  is the 
tabular t value, from Appendix 2, at  level of significance and with v = Degrees of freedom for 
error. The quantity s-dis computed as: 

 (4.17) 

where s2 is the mean square due to error and r is the number of replications. 

For illustration, the analysis carried out on data given in Table 4.5 is continued to compare all 
the possible pairs of treatments through LSD test. 

Step 1. Compute the difference between treatment means as shown in Table 4.8. 

Table 4.8. Difference between mean gbh (cm) for each pair of treatments of data in Table 4.4. 

Treatment 1 2 3 4 5 6 7 8 

1 0.00 3.12 2.14 2.73 12.53* 4.75 11.49* 3.86 

2   0.00 0.98 0.39 9.41* 1.63 8.37* 0.74 

3     0.00 0.59 10.39* 2.61 9.35* 1.72 

4       0.00 9.8* 2.02 8.76* 1.13 

5         0.00 7.78* 1.04 8.67* 

6           0.00 6.74* 0.89 

7             0.00 7.63* 

8               0.00 

* Significant at 5% level 

Step 2.Compute the LSD value at a level of significance. Since all the treatments are equally 
replicated, we need to compute only one LSD value. The LSD value is computed using 
Equations (4.16) and (4.17). 

 



Step 3.Compare difference among the treatment means against the computed value of LSD and 
place the asterisk against significant differences. The results are shown in Table 4.8. 

Estimation of missing values 

A missing data situation occurs whenever a valid observation is not available for any one of the 
experimental units. Missing data could occur due to accidental improper application of 
treatments, erroneous observations, destruction of experimental units due to natural calamities 
like fire, damage due to wildlife etc. It is extremely important, however, to carefully examine the 
reasons for missing data. The destruction of the experimental material must not be the result of 
the treatment e ffect. If a plot has no surviving plants because it has been grazed by stray cattle 
or vandalized by thieves, each of which is clearly not treatment related, missing data should be 
appropriately declared. On the other hand, for example, if a control plot (i.e., untreated plot) in 
an insecticide trial is totally damaged by the insects, the destruction is a logical consequence of 
that plot being the control plot. Thus, the corresponding plot data should be accepted as valid 
(i.e., zero yield if all plants in the plot are destroyed, or the actual low yield value if some plants 
survive) instead of treating it as missing data. 

Occurrence of missing data results in two major difficulties; loss of information and non- 
applicability of the standard analysis of variance. When an experiment has one or more 
observations missing, the standard computational procedures of the analysis of variance no 
longer apply except for CRD. One alternative in such cases is the use of the missing data 
formula technique. In the missing data formula technique, an estimate of a single missing 
observation is provided through an appropriate formula according to the experimental design 
used. This estimate is used to replace the missing data and the augmented data set is then 
subjected, with some slight modifications, to the standard analysis of variance. 

It is to be noted that an estimate of the missing data obtained through the missing data formula 
technique does not supply any additional information, the data once lost is not retrievable 
through any amount of statistical manipulation. What the procedure attempts to do is to allow 
the researcher to compute the analysis of variance in the usual manner (i.e., as if the data were 
complete) without resorting to the more complex procedures needed for incomplete data sets. 

A single missing value in a randomized complete block design is estimated as: 

 (4.18) 

where y = Estimate of missing data 

t = Number of treatments 

r = Number of replications 

B0 = Total of observed values of the replication that contains the missing data 

T0 = Total of observed values of the treatment that contains the missing data 

G0 = Grand total of all observed values 



The missing data is replaced by the computed value of y and the usual computational procedure 
of the analysis of variance is applied to the augmented dataset with some modifications. 

The procedure is illustrated with data of Table 4.5, with the value of the sixth treatment (sixth 
provenance) in replication II assumed to be missing, as shown in Table 4.9. The steps in the 
computation of the analysis of variance and pair comparisons of treatment means are as 
follows. 

Step 1. Firstly, estimate the missing value, using Equation (4.18) and the values of totals in 
Table 4.9. 

 = 26.47 

Table 4.9. Data of Table 4.5 with one missing observation 

Treatment 
(Provenance) 

Replication Treatment 
total 

  Rep. I Rep II Rep. III (T) 

1 30.85 38.01 35.1 103.96 

2 30.24 28.43 35.93 94.6 

3 30.94 31.64 34.95 97.53 

4 29.89 29.12 36.75 95.76 

5 21.52 24.07 20.76 66.35 

6 25.38 M 32.19 (57.57=T0) 

7 22.89 19.66 26.92 69.47 

8 29.44 24.95 37.99 92.38 

Rep. total (R) 221.15 (195.88=B0) 260.59   

Grand total (G)       (677.62=G0) 

M = Missing data 

Step 2. Replace the missing data of Table 4.9. by its estimated value computed in step 1, as 
shown in Table 4.10 and carry out the analysis of variance of the augmented data set based on 
the standard procedure of Section 4.3.3. 

Table 4.10. Data in Table 4.7 with the missing data replaced by the value estimated from the 
missing data formula technique. 



Treatment 
(Provenance) 

Replication Treatment 
total 

  Rep. I Rep II Rep. III (T) 

1 30.85 38.01 35.1 103.96 

2 30.24 28.43 35.93 94.6 

3 30.94 31.64 34.95 97.53 

4 29.89 29.12 36.75 95.76 

5 21.52 24.07 20.76 66.35 

6 25.38 26.47a 32.19 84.04 

7 22.89 19.66 26.92 69.47 

8 29.44 24.95 37.99 92.38 

Rep. total (R) 221.15 222.35 260.59   

Grand total (G)       704.09 

a Estimate of the missing data obtained from missing data formula technique 

Step 3. Make the following modifications to the analysis of variance obtained in Step 2; Subtract 
1 from both the total and error df. For our example, the total df of 23 becomes 22 and the 
error df of 14 becomes 13. Compute the correction factor for bias (B) as, 

B =  (4.19) 

=  

= 2.00 

and subtract the computed B value of 2.00 from the treatment sum of squares and the total sum 
of squares. For our example, the SSTO and the SST, computed in Step 2 from the augmented 
data of Table 4.10, are 680.12 and 432.09, respectively. Subtracting the B value of 2.00 from 
these SS values, we obtain the adjusted SST and the adjusted SSTO as: 

Adjusted SST = 432.09 - 2.00 

= 430.09 

Adjusted SSTO = 680.12 - 2.00 



= 678.12 

The resulting ANOVA is shown in Table 4.11. 

Table 4.11. Analysis of variance of data in Table 4.7 with one missing value estimated by the 
missing data formula technique. 

Source of Degree of Sum of Mean Computed Tabular F 

variation freedom squares square F 5 % 

Replication 2 125.80 62.90 6.69   

Treatment 7 430.09 61.44 6.53* 2.83 

Error 13 122.23 9.40     

Total 22 678.12       

* Significant at 5% level of significance 

Step 4. For pairwise comparisons of treatment means where one of the treatments has missing data, compute the standard error of the mean difference  as: 

 (4.20) 

where s2 is the error mean square from the analysis of variance of Step 3, r is the number of replications, and t is the number of treatments. 

For example, to compare the mean of the sixth treatment (the treatment with missing data) with any one of the other treatments, s-
d
 is computed as: 

 = 2.84 

This computed s-
d
 is appropriate for use in the computation of the LSD values. For illustration, the computation of the LSD values is shown below. Using t

v
 as the tabular t value for 13 df at 5% level of 

significance, obtained from Appendix 3, the LSD values for comparing the sixth treatment mean with any other treatment mean is computed as: 

LSDa =t
v;a

 (4.21) 

LSD
.05 

= (2.16)(2.84) = 6.13 

  

  

 

 


