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a b s t r a c t 

M t / G / Infinity queueing systems have been widely used to analyse complex systems, such as telephone call 

centres, software testing systems, and telecommunication systems. Statistical inferences of performance 

measures, such as the expected cumulative numbers of arrivals and departures, are indispensable for 

decision makers in analysing the current scenario, predicting future scenarios, and making cost-effective 

decisions. In most scenarios, we only obtain interval censored data, namely, counts in fixed time intervals, 

instead of complete data because we either do not want or are not able to monitor arrivals and depar- 

tures. We provide a general framework for statistical inference in M t / G / Infinity queueing systems given 

interval censored data. A maximum-likelihood estimation (MLE) method is proposed for inferring the ar- 

rival rate and service duration. This method is applicable to general forms of the arrival rate functions 

and general service duration distributions. More importantly, we propose a combination of the bootstrap 

method and the delta method for inferring the expected cumulative numbers of arrivals and departures. 

The results of the simulation study demonstrate that the point and interval estimates of the proposed 

MLE method are satisfactory overall. As the number of intervals increases, the estimates based on the 

proposed MLE approach the estimates based on MLE with complete data. Our procedure enables esti- 

mates to be obtained without the need to keep track of each item, thereby substantially reducing re- 

source consumption for monitoring items and storing data. An application in a software testing system 

demonstrates that the goodness-of-fit performance of the proposed MLE method is satisfactory. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

K  

t  

t  

e  

1  

(  

R  

m  

t  

p  

1  

u  

s  

e  
1. Introduction 

An M t /G/ ∞ queueing system is a relatively simple queueing

system that has a nonhomogeneous Poisson arrival process with

a time-dependent deterministic arrival rate function λa ≡ λa (t) ,

independent and identically distributed (i.i.d.) service durations

that are independent of the arrival process, and infinitely many

servers. Time-varying queueing models, including M t /G/ ∞ models,

are standard models for describing the dynamics of large-scale ser-

vice systems, such as telecommunication systems, call centres, and

healthcare systems, e.g., hospitals ( Pender, 2016 ). Researchers have

applied M t /G/ ∞ models to service systems, such as telemarketing,

police patrol, fire fighting, hospitals, copy machine repairs, and au-

tomatic teller machine operations. In these applications, an oper-

ating policy was to keep customer delays close to zero—a scenario
∗ Corresponding author at: Center of Quality and Data Science, Academy of Math- 
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hat is consistent with the use of an infinite-server model ( Green &

olesar, 1998 ). M t /G/ ∞ models have been applied to storage sys-

ems to assess the day-by-day adequacy of stock ( Crawford, 1977 ),

o analyse stock requirements ( Hillestad & Carrillo, 1980 ), and to

valuate war-readiness spare requirements for aircraft ( Crawford,

981 ). They also have been applied to software testing programs

 Vizarreta et al., 2018; Yang, 1996 ) and internet traffic systems ( Fay,

oueff & Soulier, 2007 ). The M t /G/ ∞ model is the offered load

odel for wireless and packet network systems, which describes

he total packet carrying capacity of the channels or links in a

acket network ( Malhotra, Dey, van Doorn & Koonen, 2001; Palm,

943; Singhai, Joshi & Bhatt, 2009 ). M t /G/ ∞ models have been

sed to describe the time-dependent variations in traffic at a base

tation in a nomadic computing, wireless environment ( Malhotra

t al., 2001 ). Risk measures have been studied to assess the perfor-

ance of M t /G/ ∞ queueing systems and the measures can be used

n staffing procedures, especially in healthcare systems ( Pender,

016 ). By considering the births and deaths of items as the arrival

nd departure processes, we can also analyse the births and deaths

n a population with M t /G/ ∞ models. 
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Although, in practice, systems do not have an infinitely many

ervers, various properties of an infinite server model are ap-

roximately (in an appropriate sense) true for finite-channel (and

ven single-channel) servers if the arrival rate is sufficiently low

o yield a negligible probability that a customer will arrive to

nd the service full ( Newell, 1966 ). The model also provides a

easonable description of congestion in actual operations under

imilar circumstances ( Green & Kolesar, 1998 ). In addition, the

umber of busy servers in an infinite server model provides

nsight about the number of servers that are required in practical

cenarios. Satisfactory analytical results are available for M t /G/ ∞
ueueing systems. Compared with finite-server queueing systems,

he number of busy servers, which is denoted as N(t) , and the

eparture rate, which is denoted as λd (t) , of an M t /G/ ∞ queueing

ystem are relatively simple to determine. The theory for infinite-

erver models with time-dependent arrival rates is a useful frame

f reference for examining more difficult finite-server models with

ime-dependent arrival rates ( Massey & Whitt, 1993 ). Infinite-

erver models are of interest both in their own right ( Eick, Massey

 Whitt, 1993; Fay et al., 2007; Yang, 1996 ) and as approximations

or lightly to moderately loaded multiserver models ( Eick et al.,

993; Green & Kolesar, 1998; Massey & Whitt, 1993 ). 

Research on queueing theory has provided important insights

nto the behavioural, operational, and statistical problems in

ueueing systems ( Bhat, 1969 ). One key problem of queueing

heory has been statistical inference given information regard-

ng queueing systems such that we can analyse the current sce-

ario, predict future scenarios, and make cost-effective decisions

ccordingly. In practical queueing scenarios, we often obtain large

mounts of data regarding queueing systems through observation,

uch as the moments at which customers place calls to a call

entre and the moments at which they hang up. Call centre ser-

ice distribution behaviour has been analysed using Bayesian para-

etric and semi-parametric mixture models that can exhibit non-

tandard behaviour and are based on real call centre data ( Aktekin,

014 ). Inter-dependent, heterogeneous, and time-varying service-

ime distributions have been proposed that are based on a large-

cale data-based investigation of service durations in a call centre

ith many heterogeneous agents and multiple call types ( Ibrahim,

’Ecuyer, Shen & Thiongane, 2016 ). Information in the form of ob-

erved service durations was used to derive predictive probabil-

ty results for the waiting times of customers in a queue. The

esults can be used in a multi-queue problem to assign arriving

ustomers to queues with the objective of minimizing the wait-

ng times ( Coolen & Coolen-Schrijner, 2003 ). In M t /G/ ∞ queueing

ystems, we wish to infer the arrival rate function λa (t) ; the cu-

ulative distribution function (cdf), which is denoted by G, of the

ervice duration S; and, consequently, the performance measures

f interest, such as the expected cumulative numbers of arrivals

nd departures, which are denoted as m a (t) and m d (t) , respec-

ively, and the expected number of busy servers, which is denoted

s m (t) . These measures give insight to service providers about

he number of servers that are required. Given complete data on

he queueing system, i.e., the arrival epoch and departure epoch of

ach item, it is simple to infer λa (t) and G . However, in most sce-

arios, we can only obtain incomplete data since it is often difficult

r impossible to keep track of each item from arrival to departure

 Blanghaps, Nov & Weiss, 2013 ). Despite its substantial practical

alue in practical scenarios, statistical inference with incomplete

ata remains a major challenge, which is mainly due to the high

omplexity of time-dependent queueing systems with incomplete

ata. 

Researchers have extensively studied statistical inference ap-

roaches given incomplete data in the M/G/ ∞ queueing system,

hich is a simple and special case of the M t /G/ ∞ queueing sys-

em. An M t /G/ ∞ queueing system is an M/G/ ∞ queueing system
f the arrival process is a homogeneous Poisson process, i.e., if λa 

s a constant. Researchers mainly focus on three types of incom-

lete data: (1) the arrival and departure epochs without identifica-

ion of items ( Blanghaps et al., 2013; Brown, 1970; Goldenshluger,

018 ); (2) the queue-length process { N(t) } ( Bingham & Pitts, 1999;

oldenshluger, 2016; Pickands & Stine, 1997 ); and (3) the “busy-

eriod” process { I( N( t) ) > 0 } , which indicates only whether the

ystem is empty or not ( Bingham & Pitts, 1999; Hall & Park, 2004;

ark, 2007 ). Due to the similarity between M/G/ ∞ queueing sys-

ems and M t /G/ ∞ queueing systems, many approaches and results

n M/G/ ∞ queueing systems can be extended to M t /G/ ∞ queue-

ng systems. However, in M/G/ ∞ queueing systems, researchers fo-

us on the steady state of the systems, in contrast to the tran-

ient behaviour in M t /G/ ∞ queueing systems. Common relations

or steady-state queueing systems, such as Little’s law, must be

eformulated in M t /G/ ∞ queueing systems ( Schwarz, Selinka &

tolletz, 2016 ). Since the arrival and departure rate functions are

ime-dependent in M t /G/ ∞ queueing systems, many properties in

/G/ ∞ queueing systems do not hold in M t /G/ ∞ queueing sys-

ems. To examine the dynamics of real systems ( Andersen, Nielsen,

einhardt & Stidsen, 2019; Dhingra, Kumawat, Roy & de Koster,

018; Liu, 2018; Massey, 2002 , Parker; Pender, 2016; Schwarz et

l., 2016 ), it is essential to study M t /G/ ∞ queueing systems. 

We are interested in one type of incomplete data that is com-

only used, interval censored data, which are also known as

rouped data and panel count data and are specified as counts that

ccur in fixed time intervals, as opposed to the exact times be-

ause we cannot perform continuous observations in many cases.

nterval censored data are similar but more complicated than data

ype (1) above since neither the correspondence between the ar-

ivals and departures nor the exact arrival and departure times

re known. Yang (1996) inferred the parameters regarding the ar-

ival process and service duration separately: the arrival process

arameters were estimated using the Laplace trend statistic and

he service duration parameters were estimated based on the es-

imated arrival process parameters. The least-squares estimation

LSE) method is a convenient and efficient method for parame-

er estimation ( Xie, Hu, Wu & Ng, 2007 ); however, the maximum-

ikelihood estimation (MLE) method is preferable due to its numer-

us asymptotic optimality properties. A likelihood function for the

rrival and departure process was formulated with the hidden as-

umption that the combined distribution of any future cumulative

umbers of arrivals and departures depends solely on the present

alues ( Wu, Hu, Xie & Ng, 2007 ). Then, the hidden assumption was

elaxed and an MLE method for the joint process was proposed,

hich can be applied to more general scenarios and can provide

ore accurate results ( Wang, Hu & Liu, 2016 ). Since we occasion-

lly encounter several difficulties in solving the likelihood func-

ion, an alternative parameter estimation algorithm that is based

n the EM principle was developed ( Wang, 2016 ). Algorithms that

re based on the Bayesian framework were also presented ( Wang,

u & Xie, 2015 ). In all the research that is discussed above, point

stimation and interval estimation are proposed for model param-

ters of the fault detection process and the correction process in

oftware testing projects, which can be viewed as M t /G/ ∞ queue-

ng systems. However, we are more concerned with the perfor-

ance measures of queueing systems in practical queueing sce-

arios, such as the expected cumulative numbers of arrivals m a (t)

nd departures m d (t) . Statistical inference on these measures has

ot yet been studied. 

Our major contribution in this paper is that we provide a gen-

ral framework for handling the statistical inference problem in

 t /G/ ∞ queueing systems given interval censored data. In many

ases, we may either not want or not be able to monitor arrivals

nd departures; in such cases, only the count of items in the queue

s observed ( Pickands & Stine, 1997 ). In addition, observers may
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only record data at fixed time points instead of observing continu-

ously to maintain cost-effectiveness, among other reasons. As a re-

sult, interval censored data are commonly used in practical scenar-

ios ( Brown et al., 2005; Deng & Mark, 1993; Mandelbaum, Sakov

& Zeltyn, 20 0 0; Massey et al., 1996 ). Although extensive studies

have been conducted on statistical inference approaches in similar

scenarios for the homogeneous cases, M/G/ ∞ queueing systems,

the dynamics of real systems ( Andersen et al., 2019; Dhingra et al.,

2018; Liu, 2018; Massey, 2002; Massey et al., 1996; Pender, 2016;

Schwarz et al., 2016 ) have not been considered. In this paper, we

study the transient behaviour in the nonhomogeneous cases, the

M t /G/ ∞ queueing systems, which better accord with practical sce-

narios. We provide a general MLE method for inferring the arrival

rate and service duration in M t /G/ ∞ queueing models given inter-

val censored data; this method is applicable to a general service

duration distribution G . More importantly, we propose a combi-

nation of the bootstrap method and the delta method for infer-

ring the expected cumulative numbers of arrivals and departures,

which are indispensable for decision makers in determining the

number of required servers. The remainder of the paper is orga-

nized as follows: In Section 2 , we formulate the problem, describe

the maximum-likelihood estimation method and propose a combi-

nation of the bootstrap method and the delta method for approxi-

mating the confidence intervals of m a (t) and m d (t) . In Section 3 , a

simulation study is conducted to study the goodness-of-fit perfor-

mance of our proposed MLE method. We study the impact of the

number of intervals on M t /G/ ∞ queueing models with exponen-

tial and log-normal service durations. In Section 4 , we apply our

proposed MLE method on a software testing system. In Section 5 ,

we present the conclusions of this work and discuss possible di-

rections for future study. 

2. Maximum-likelihood estimation in M t /G/ ∞ queueing 

systems given interval censored data 

In M t /G/ ∞ queueing systems, we wish to infer the arrival rate

function λa (t) ; the cdf G of the service duration given interval

censored data; and, consequently, other performance measures of

interest, namely, the cumulative numbers of arrivals and depar-

tures. In Section 2.1 , we review the essential properties of M t /G/ ∞
queueing systems, which are vital to the estimation of the per-

formance measures in Section 2.3 , and approaches for identifying

these properties, which shed light on the formulation of the likeli-

hood function in Section 2.2 . 

2.1. Performance analysis of M t / G/ ∞ queueing systems 

In M t /G/ ∞ queueing systems, customers do not interact. Be-

cause there are infinitely many servers, customers do not interfere

with one another; due to the Poisson arrivals, the arrival time of a

customer carries no information about the arrival time of the other

customers ( Eick et al., 1993 ). Thus, satisfactory analytical results

are available for M t /G/ ∞ queueing systems. If a system is initially

empty, the number of busy servers at time t , namely, N(t ) , has a

Poisson distribution with mean 

m ( t ) = 

∫ t 

0 

λa ( u ) [ 1 − G ( t − u ) ] du (2.1)

and the departure process is also a nonhomogeneous Poisson pro-

cess with mean 

m d ( t ) = 

∫ t 

0 

λa ( u ) G ( t − u ) du. (2.2)

If the system is not initially empty, we can calculate the value

of m (t) via the probability generating function (pgf) of N(t) ; see

Keilson and Servi (1994) . 
The properties above can be obtained via several approaches.

 simple approach is to take advantage of a property of Poisson

rocesses: a censored Poisson process is Poisson and the sum of

oisson random variables is a Poisson random variable ( Crawford,

981 ). In addition, an item departs after it has arrived and its

ervice has been completed; hence, the departure process can be

odelled as a delayed arrival process ( Xie et al., 2007 ). In addi-

ion to direct approaches for evaluating the probabilities, the rel-

vant theory for infinite-server models is well established in the

heory of stochastic point processes and random measures ( Massey

 Whitt, 1993 ). The arrival epoch and service duration generate a

oisson random measure on Euclidean space; see Daley and Vere-

ones (1988), Foley (1982), Foley (1986), Prekopa (1958), Rényi

1967) and pp. 26–31 of Serfozo (1990) . 

The most direct approach is to evaluate the probabilities for

arious events directly from the properties of the arrival and ser-

ice duration distributions. This method sheds light on the formu-

ation of the likelihood function given interval censored data. To

btain the distribution of N(t) , Hillestad and Carrillo (1980) ini-

ially evaluated the conditional probability. Denote by N a (t) the

umber of arrivals by time t . The conditional probability P (N(t) =
 | N a (t) = a ) can be viewed as the probability of n successes and

 − n failures in a independent trials with a success probability of

p on each trial, i.e., P (N(t) = n | N a (t) = a ) is a binomial distribution

robability, where p denotes the probability that an arbitrary item

hat arrived prior to time t is still in the system at time t . By the

otal probability theorem, 

p = 

∫ t 

0 
[ 1 − G ( t − u ) ] 

λa ( u ) 

m a ( u ) 
du, (2.3)

here 

 a ( t ) = 

∫ t 

0 

λa ( τ ) dτ (2.4)

enotes the mean value function of the arrival process. Thus, 

 ( N ( t ) = n | N a ( t ) = a ) = 

(
a 
n 

)
p n ( 1 − p ) 

a −n n = 0 , 1 , . . . , a. 

(2.5)

Unconditioning on N a (t) yields 

 ( N ( t ) = n ) = 

∞ ∑ 

k = n 

(
a 
n 

)
p n ( 1 − p ) 

a −n e 
−m a ( t ) [ m a ( t ) ] 

k 

k ! 

= 

e −p m a ( t ) [ p · m a ( t ) ] 
n 

n ! 
. 

Therefore, formula (2.1) , which is presented at the beginning

f this section, is obtained: N(t) has a Poisson distribution with

ean 

 ( t ) = p m a ( t ) = 

∫ t 

0 

λa ( u ) [ 1 − G ( t − u ) ] du. 

The property of the departure process can be obtained via a

imilar approach to the evaluation of the conditional probability

 Yang, 1996 ). The main strategy of this approach is to evaluate the

robability by first obtaining the conditional probability, which is

 binomial distribution probability. In addition, the probability of

uccess p is obtained via the total probability theorem. The ap-

roach of evaluating the conditional probability first can be ex-

ended to evaluate the probabilities of more complicated events. In

he following section, in which we formulate the likelihood func-

ion given interval censored data, we obtain the likelihood func-

ion by partitioning it into a series of conditional probabilities,

hich are Poisson distribution probabilities and binomial distri-

ution probabilities. In addition, the probabilities of successes can

e obtained via similar approaches that utilize the total probability

heorem. 
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1 , . . . , n 

d 
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each bar represent the arrival and departure epochs, respectively, of each item. The length of each bar represents the service duration of each item. 
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.2. Problem formulation 

Suppose the system is initially empty. We wish to infer the ar-

ival rate function λa (t) ; the cumulative distribution function (cdf)

 of the service duration; and, consequently, the expected cumu-

ative numbers of arrivals and departures, m a (t) and m d (t) , in

he M t /G/ ∞ queueing system given interval censored data. Sup-

ose the form of the arrival rate function λa (t) , and the fam-

ly of distributions of the service duration S are known. We wish

o infer all the unknown parameters, denoted by parameter vec-

or � ∈ � ⊂ R m , which contains all the parameters in λa (t) and

df G . We only observe at fixed time points, which are denoted

s t i ( i = 1 , 2 , . . . , k ) , and obtain the interval censored data D =
 ( t i , n 

a 
i 
, n d 

i 
) , i = 1 , 2 , . . . , k } , where n a 

i 
and n d 

i 
denote the numbers

f arrivals and departures, respectively, in time interval ( t i −1 , t i ] for

 = 1 , 2 , . . . , k . For simplicity, we define t 0 = 0 , n a 
0 

= n d 
0 

= 0 . Fig. 1

hows the interval censored data schematically. 

Since both the arrival and departure processes are nonhomoge-

eous Poisson processes, we can infer λa (t) from the arrival pro-

ess and G from the departure process via the approaches of sta-

istical inference for nonhomogeneous Poisson processes with in-

erval censored data. We can also infer both λa (t) and G from

he departure process; however, we do not make full use of the

ata via this approach. Despite the complexity of the problem, by

onsidering the arrival and departure processes together, we can

ake more effective use of all the interval censored data. There-

ore, we formulate the likelihood function for the joint process of

rrival and departure and apply the maximum-likelihood estima-

ion method to infer model parameter vector �. 

Similar to the approach that was reviewed in Section 2.1 , we

ish to obtain the joint likelihood function of the arrival and de-

arture process via conditional probability density functions that

re simpler to obtain. Inspired by the partition of a joint density

unction f ( x 1 , x 2 , . . . , x K ) , which is expressed as 

f ( x 1 , x 2 , . . . , x K ) = f ( x 1 ) f ( x 2 | x 1 ) f ( x 3 | x 1 , x 2 ) . . . f ( x K | x 1 , . . . , x K−1 )

= 

K ∏ 

i =1 

f ( x i | x 1 , . . . , x i −1 ) , (2.6
e can partition the likelihood function in the same way by repre-

enting the joint density function as the product of a series of con-

itional density functions. Substituting n a 
1 
, n a 

2 
, . . . , n a 

k 
, n d 

1 
, n d 

2 
, . . . , n d 

k 
or x 1 , x 2 , . . . , x K in formula (2.6) yields 

 ( D, �) = f ( n 

a 
1 ) f ( n 

a 
2 | n 

a 
1 ) f ( n 

a 
3 | n 

a 
1 , n 

a 
2 ) . . . f 

(
n 

a 
k | n 

a 
1 , . . . , n 

a 
k −1 

)
× f 
(
n 

d 
1 | n 

a 
1 , . . . , n 

a 
k −1 , n 

a 
k 

)
× f 
(
n 

d 
2 | n 

a 
1 , . . . , n 

a 
k , n 

d 
1 

)
× f 
(
n 

d 
3 | n 

a 
1 , . . . , n 

a 
k , n 

d 
1 , n 

d 
2 

)
. . . 

× f 
(
n 

d 
k | n 

a 
1 , . . . , n 

a 
k , n 

d 
1 , n 

d 
2 , . . . , n 

d 
k −1 

)
= 

k ∏ 

i =1 

f 
(
n 

a 
i | n 

a 
1 , . . . , n 

a 
i −1 

)
f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
k , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
. 

(2.7) 

Since the arrival process is a nonhomogeneous Poisson process,

he number of arrivals in time interval ( t i −1 , t i ] is independent of

he number of arrivals prior to time t i −1 . Thus, 

f 
(
n 

a 
i | n 

a 
1 , . . . , n 

a 
i −1 

)
= f 
(
n 

a 
i 

)
, i = 1 , 2 , . . . , k. (2.8)

Since n d 
i 

denotes the number of departures in time interval

( t i −1 , t i ] , it is independent of the number of arrivals after time t i .

hus, 

f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
k , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
, i = 1 , 2 , . . . , k. (2.9) 

Therefore, the likelihood function can be simplified to 

L ( D, �) = 

k ∏ 

i =1 

f 
(
n 

a 
i 

)
f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
. (2.10)

For simplicity, we use poi ( ·; m ) to represent a Poisson mass

unction with mean m : 

poi ( j ; m ) = 

m 

j 

j! 
e −m 

From the properties of Poisson processes, we obtain 

f 
(
n 

a 
i 

)
= poi 

(
n 

a 
i ; m a ( t i ) − m a ( t i −1 ) 

)
, i = 1 , 2 , . . . , k. (2.11)
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We obtain f ( n d 
i 
| n a 

1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) next. 

To obtain 

f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
, i = 1 , 2 , . . . , k, 

we classify items that departed in time interval ( t i −1 , t i ] into two

types: Items of the first type are items that arrived prior to time

 i −1 , the number of which is denoted as n d1 
i 

. Items of the second

type are items that arrived in time interval ( t i −1 , t i ] , the number of

which is denoted as n d2 
i 

. It follows that 

n 

d 
i = n 

d1 
i + n 

d2 
i , i = 1 , 2 , . . . , k. (2.12)

The ranges of n d1 
i 

and n d2 
i 

are ( Appendix A ): 

0 ≤ n 

d1 
i ≤ min 

( 

i −1 ∑ 

l=1 

n 

a 
l −

i −1 ∑ 

l=1 

n 

d 
l , n 

d 
i 

) 

, i = 1 , 2 , . . . , k. (2.13)

0 ≤ n 

d2 
i ≤ min 

(
n 

a 
i , n 

d 
i 

)
, i = 1 , 2 , . . . , k. (2.14)

Based on the properties of Poisson processes, the items of these

two types are independent. Since n d1 
i 

and n d2 
i 

are both unknown,

we can partition f ( n d 
i 
| n a 

1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) as 

f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= f 
(
n 

d1 
i + n 

d2 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= 

h i ∑ 

j= g i 
f 
(
n 

d1 
i = n 

d 
i − j, n 

d2 
i = j| n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= 

h i ∑ 

j= g i 

[
f 
(
n 

d1 
i = n 

d 
i − j| n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
× f 
(
n 

d2 
i = j| n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)]
, i = 1 , 2 , . . . , k. (2.15)

where j represents all the possible values of n d2 
i 

, which range from

g i to h i . From (2.13) and (2.14) , which express the ranges of n d1 
i 

and

n d2 
i 

, we obtain the minimum of j: 

g i = max 

( 

0 , n 

d 
i −

i −1 ∑ 

l=1 

n 

a 
l + 

i −1 ∑ 

l=1 

n 

d 
l 

) 

, i = 1 , 2 , . . . , k (2.16)

and the maximum of j: 

h i = min 

(
n 

a 
i , n 

d 
i 

)
, i = 1 , 2 , . . . , k. (2.17)

Whether an item that arrived in time interval ( t i −1 , t i ] departed

in time interval ( t i −1 , t i ] depends entirely on its exact arrival epoch

and its service duration; the arrivals and departures prior to time

 i −1 are not relevant. Thus, 

f 
(
n 

d2 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= f 
(
n 

d2 
i | n 

a 
i 

)
, i = 1 , 2 , . . . , k. 

(2.18)

Therefore, formula (2.15) simplifies to 

f 
(
n 

d 
i | n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= 

h i ∑ 

j= g i 
f 
(
n 

d1 
i = n 

d 
i − j| n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
× f 
(
n 

d2 
i = j| n 

a 
i 

)
, i = 1 , 2 , . . . , k. (2.19)

First, we obtain f ( n d2 
i 

| n a 
i 
) ( i = 1 , 2 , . . . , k ) . Similar to formula

(2.5) in Section 2.1 , f ( n d2 
i 

| n a 
i 
) are binomial distribution probabil-

ities. In time interval ( t i −1 , t i ] , n a 
i 

items arrived and n d2 
i 

of these

items departed. f ( n d2 
i 

| n a 
i 
) can be viewed as the probability of n d2 

i 

successes and n a 
i 

− n d2 
i 

failures in n a 
i 

independent trials with a suc-

cess probability of p 2 
i 

on each trial. Similar to formula (2.3) in
ection 2.1 , p 2 
i 

can be formulated using the total probability the-

rem ( Appendix B ): 

p 2 i = [ m a ( t i ) − m a ( t i −1 ) ] 
−1 

∫ t i 

t i −1 

G ( t i − y ) λa ( y ) dy , i = 1 , 2 , . . . , k. 

(2.20)

For simplicity, we use bin ( ·; p, n ) to represent a binomial mass

unction with parameters p and n : 

in ( j ; p, n ) = 

(
n 

j 

)
(p) j ( 1 − p ) 

n − j 
. 

We have 

f 
(
n 

d2 
i = j| n 

a 
i 

)
= bin 

(
j ; p 2 i , n 

a 
i 

)
, i = 1 , 2 , . . . , k. (2.21)

Next, we obtain f ( n d1 
i 

| n a 
1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) ( i = 1 , 2 , . . . , k )

hich are also binomial distribution probabilities, sim-

lar to formula (2.5) in Section 2.1 . We define t i 0 =
ax ( t j : 

∑ j 

l=1 
n a 

l 
= 

∑ j 

l=1 
n d 

l 
, j = 1 , . . . , i − 1 ) . For time t i 0 , which is

efore time t i −1 , the number of arrivals is equal to the number

f departures prior to time t i 0 ; hence, items that arrived prior to

ime t i 0 all departed prior to time t i 0 and they will not depart

n time interval ( t i −1 , t i ] . Therefore, we only need to consider

tems that arrived in time interval ( t i 0 , t i −1 ] . 
∑ i −1 

l=1 
n a 

l 
−∑ i −1 

l=1 
n d 

l 
of

hem did not depart prior to t i −1 and n d1 
1 

of them departed in

ime interval ( t i −1 , t i ] . Thus, f ( n d1 
i 

| n a 
1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) is the

robability of n d1 
i 

successes and 

∑ i −1 
l=1 

n a 
l 

−∑ i −1 
l=1 

n d 
l 

− n d1 
i 

failures in
 i −1 
l=1 

n a 
l 

−∑ i −1 
l=1 

n d 
l 

independent trials with a success probability of

p 1 
i 

on each trial. p 1 
i 

denotes the probability that an item departed

n time interval ( t i −1 , t i ] conditioned on its arrival in time interval

( t i 0 , t i −1 ] and its departure after time t i −1 . Define p i as the proba-

ility that an item departed prior to time t i −1 conditioned on its

rrival in time interval ( t i 0 , t i −1 ] and q i as the probability that an

tem departed in time interval ( t i −1 , t i ] conditioned on its arrival

n time interval ( t i 0 , t i −1 ] . We have 

p 1 i = 

q i 
1 − p i 

, i = 1 , 2 , . . . , k. (2.22)

We obtain via the total probability theorem (Appendix B) 

p i = [ m a ( t i −1 ) −m a ( t i 0 ) ] 
−1 

∫ t i −1 

t i 0 

G ( t i −1 − y ) λa ( y ) dy , i = 1 , 2 , . . . , k,

(2.23)

 i = [ m a ( t i −1 ) − m a ( t i 0 ) ] 
−1 

∫ t i −1 

t i 0 

[ G ( t i − y ) − G ( t i −1 − y ) ] λa ( y ) dy, 

i = 1 , 2 , . . . , k, (2.24)

nd, consequently, p 1 
i 
. Thus, 

f 
(
n 

d1 
i = n 

d 
i − j| n 

a 
1 , . . . , n 

a 
i , n 

d 
1 , n 

d 
2 , . . . , n 

d 
i −1 

)
= bin 

( 

n 

d 
i − j ; p 1 i , 

i −1 ∑ 

l=1 

n 

a 
l −

i −1 ∑ 

l=1 

n 

d 
l 

) 

, i = 1 , 2 , . . . , k. (2.25)

When i = 1 , there was no arrival prior to time t i −1 . Thus, n d1 
1 

=
 , f ( n d 

1 
| n a 

1 
, n d 

0 
) = f ( n d2 

1 
= n d 

1 
| n a 

1 
) . We can simply define f ( n d1 

1 
| n a 

1 
) =

 , which does not affect the value of the likelihood func-

ion. Similarly, if t i 0 = t i −1 , then 

∑ i −1 
l=1 

n a 
l 

= 

∑ i −1 
l=1 

n d 
l 
. No item

hat arrived prior to t i −1 departed after t i −1 ; hence, n d1 
i 

= 0 .

hus, f ( n d 
i 
| n a 

1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) = f ( n d2 

i 
= n d 

i 
| n a 

i 
) . For sim-

licity, we set f ( n d1 
i 

| n a 
1 
, . . . , n a 

i 
, n d 

1 
, n d 

2 
, . . . , n d 

i −1 
) = 1 . Therefore, the

oint likelihood function of the arrival and departure process is 



D. Li, Q. Hu and L. Wang et al. / European Journal of Operational Research 279 (2019) 882–901 887 

L

 

�

�

s  

r  

m  

v  

s

 

r  

b  

i  

2

G

w  

p  

a  

t  

(  

p  

t  

t  

t  

T

λ

i  

r  

c  

i  

t  

o  

S  

r  

o  

(  

a

 

q

 

v

 

 

 

o  

d  

d  

i  

n  

t  

�

 

 

 

i

 

t  

v  

t

G

w  

s  

s

d  

d  

d  

n  

G  

a  

h

 ( D, �) = 

k ∏ 

i =1 

{[ h i ∑ 

j= g i 
bin ( j ; p 2 i , n 

a 
i ) 

×bin 

(
n 

d 
i − j ; p 1 i , 

i −1 ∑ 

l=1 

n 

a 
l −

i −1 ∑ 

l=1 

n 

d 
l 

)]
×poi ( n 

a 
i ; m a ( t i ) − m a ( t i −1 ) ) 

}
(2.26) 

To obtain the maximum-likelihood estimate of parameter vector

, 

ˆ = argma x �∈ �L ( D, �) , (2.27) 

everal optimization methods, such as the Newton–Raphson algo-

ithm and the Nelder–Mead simplex algorithm, can be used. The

aximum-likelihood estimate of the departure process may pro-

ide appropriate initial parameters in the iterative methods to en-

ure a globally optimum solution. 

The MLE approach is applicable to the general form of the ar-

ival rate function λa (t) , and the general service duration distri-

ution G . The most frequently used parametric model of service

s that of exponentially distributed durations (Bertsimas & Doan,

010) : 

 ( s ) = 1 − e −υs , (2.28) 

here 1 
υ represents the mean of the exponential distribution. In

ractice, the main “theoretical” justification for its use has been

nalytical tractability, along with a lack of empirical evidence to

he contrary (Gans, Koole & Mandelbaum, 2003) . Given formulas

 2.20 ) and (2.22) –(2.24), the expressions of p 1 
i 

and p 2 
i 

can be sim-

lified if the forms of λa (t) and G are simple. Since the exponen-

ial service duration has a cdf with a comparatively simple form,

he expressions of p 1 
i 

and p 2 
i 

can be simplified for special forms of

he arrival rate function λa (t) , such as the log-linear arrival rate.

he log-linear arrival rate, which is expressed as 

a ( t ) = e α0 + α1 t , 

s commonly used in practical scenarios. The log-linear arrival rate

epresents a scenario in which the arrival rate is monotonically in-

reasing or decreasing and is preferred over a linear model because

t is positive for all values of α0 and α1 , while the linear rate func-

ion can be kept positive only by imposing nonlinearity restrictions

n α0 and α1 and leads to simple statistical procedure ( Lewis &

hedler, 1976 ). When the arrival process has a log-linear arrival

ate and the service duration is exponentially distributed, we can

btain the analytical solutions of the integrals in formulas (2.20) ,

 2.23 ) & (2.24) . Via formulas (2.23) & ( 2.24 ), p i and q i are obtained

s 

p i = [ m a ( t i −1 ) − m a ( t i 0 ) ] 
−1 
∫ t i −1 

t i 0 

G ( t i −1 − y ) λa ( y ) dy 

= 

[
e α0 

α1 

(
e α1 t i −1 − 1 

)
− e α0 

α1 

(
e α1 t i 0 − 1 

)]−1 ∫ t i −1 

t i 0 

[ 
1 − e −υ( t i −1 −y ) 

] 
e α0 + α1 y dy

= 1 + 

α1 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 
( t i −1 � = t i 0 ) , i = 1 , 2 , . . . , k. 

 i = [ m a ( t i −1 ) − m a ( t i 0 ) ] 
−1 

∫ t i −1 

t i 0 

[ G ( t i − y ) − G ( t i −1 − y ) ] λa ( y ) dy 

= 

[ 
e α0 

α1 

(
e α1 t i −1 − 1 

)
− e α0 

α1 

(
e α1 t i 0 − 1 

)] −1 

×
∫ t i −1 

t i 0 

{[
1 − e −υ( t i −y ) 

]
−
[
1 − e −υ( t i −1 −y ) 

] }
e α0 + α1 y dy 

= 

[
1 + 

α1 e 
υ( t i −1 −t i ) 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 

]

−
[

1 + 

α1 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 

]
= 

(
e υ( t i −1 −t i ) − 1 

) α1 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 

( t i −1 � = t i 0 ) , 

i = 1 , 2 , . . . , k. 

Therefore, via formula (2.22) , p 2 
i 

are obtained as 

p 1 i = 

q i 
1 − p i 

= 

[(
e υ( t i −1 −t i ) − 1 

) α1 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 

]
÷
{

1 −
[

1 + 

α1 

α1 + υ

1 − e ( α1 + υ) ( t i 0 −t i −1 ) 

e α1 ( t i 0 −t i −1 ) − 1 

]}
= 1 − e υ( t i −1 −t i ) ( t i −1 � = t i 0 ) , i = 1 , 2 , . . . , k. 

Similarly, via formula (2.20) , p 2 
i 

are obtained as 

p 2 i = [ m a ( t i ) − m a ( t i −1 ) ] 
−1 

∫ t i 

t i −1 

G ( t i − y ) λa ( y ) dy 

= 

[ 
e α0 

α1 

(
e α1 t i − 1 

)
− e α0 

α1 

(
e α1 t i −1 − 1 

)] −1 ∫ t i 

t i −1 

[
1 − e −υ( t i −y ) 

]
e α0 + α1 y dy 

= 1 + 

α1 

α1 + υ

1 − e ( α1 + υ) ( t i −1 −t i ) 

e α1 ( t i −1 −t i ) − 1 
, i = 1 , 2 , . . . , k. 

In this case (log-linear arrival rates paired with exponential ser-

ice durations), p 1 
i 

and p 2 
i 

are converted to simpler forms: 

p 1 i = 1 − e υ( t i −1 −t i ) ( t i −1 � = t i 0 ) , i = 1 , 2 , . . . , k. (2.29)

p 2 i = 1 + 

α1 

α1 + υ

1 − e ( α1 + υ) ( t i −1 −t i ) 

e α1 ( t i −1 −t i ) − 1 

, i = 1 , 2 , . . . , k. (2.30)

According to formulas (2.29) & (2.30) , p 1 
i 

and p 2 
i 

do not depend

n the starting point or the end point of each interval; they only

epend on the length of each interval. When t i −1 � = t i 0 , p 1 
i 

does not

epend on t i 0 or parameters α0 and α1 in the arrival rate function;

t only depends on parameter υ of the service duration. p 2 
i 

does

ot depend on parameter α0 ; it depends only on parameter α1 in

he arrival rate function. When each interval has the same length

t , p 1 
i 

and p 2 
i 

can be further simplified as: 

p 1 i = 1 − e −υ�t ( t i −1 � = t i 0 ) , i = 1 , 2 , . . . , k. (2.31)

p 2 i = 1 + 

α1 

α1 + υ

1 − e −( α1 + υ) �t 

e −α1 �t − 1 

, i = 1 , 2 , . . . , k. (2.32)

If t i −1 � = t i 0 , p 1 
i 

and p 2 
i 

do not depend on i , i.e., p 1 
i 

is the same

n every interval, as is p 2 
i 
. 

In addition to the exponential distribution, the log-normal dis-

ribution has been shown to be a remarkably good fit for the ser-

ice duration distribution ( Brown et al., 2005 ). The cumulative dis-

ribution function (cdf) G (s ) of the log-normal distribution is 

 ( s ) = �

(
ln ( s ) − μ

σ

)
, (2.33) 

here � denotes the cumulative distribution function of the

tandard normal distribution and μ and σ denote the mean and

tandard deviation of the variable’s natural logarithm. Note that μ
enotes the mean of the variable’s natural logarithm; μ does not

enote the mean of the service duration. The mean of the service

uration is e μ+ σ2 

2 . Unlike the exponential distribution, the log-

ormal distribution does not have a closed-form expression for cdf

 and there are no closed-form expressions for p 1 
i 

and p 2 
i 
. If the

rrival process has a log-linear arrival rate and the service duration

as a log-normal distribution, p 1 
i 

and p 2 
i 

are expressed as 

p 1 i = 

q i 
1 − p 

, 

i 
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p 2 i = 

α1 

e α0 ( e α1 t i − e α1 t i −1 ) 

∫ t i 

t i −1 

�

(
ln ( t i − y ) − μ

σ

)
e α0 + α1 y dy, 

i = 1 , 2 , . . . , k, (2.34)

where 

p i = 

α1 

e α0 ( e α1 t i −1 − e α1 t i 0 ) 

∫ t i −1 

t i 0 

�

(
ln ( t i −1 − y ) − μ

σ

)
e α0 + α1 y dy, 

(2.35)

q i = 

α1 

e α0 ( e α1 t i −1 − e α1 t i 0 ) 

∫ t i −1 

t i 0 

[
�

(
ln ( t i − y ) − μ

σ

)
−�

(
ln ( t i −1 − y ) − μ

σ

)]
e α0 + α1 y dy. (2.36)

The analytical solutions of the integrals in formulas (2.34) –

(2.36) cannot be obtained as in the exponential service duration

case; however, the values of �(s ) and λa (y ) = e α0 + α1 y are avail-

able for all values of s and y . Therefore, the integrals can be solved

via numerical integration methods and we can obtain the values

of p 1 
i 

and p 2 
i 
. In Sections 3 & 4 , in which the simulation study

and the application example will be presented, we will focus on

exponentially and log-normally distributed service durations as

representatives since these service durations are the two most

commonly used service durations for modelling real-life queueing

systems. However, our proposed MLE method is applicable to

general parametric models and models with other service duration

distributions can be analysed via this approach. 

2.3. Statistical inference on m a and m d 

We consider the expected cumulative numbers of arrivals and

departures, m a and m d , in addition to the parameter vector �, in

practical scenarios since the performance measures m a and m d 

provide information about the current scenario. The mean num-

ber of busy servers at time t , which is denoted as m (t) and pro-

vides information to service providers about the current server uti-

lization and the number of required servers, can be obtained from

m a (t) and m d (t) : 

m ( t ) = m a ( t ) − m d ( t ) . (2.37)

Point estimates of m a (t) and m d (t) at any fixed time t are ob-

tained via formulas (2.4) & (2.2) : 

ˆ m a ( t ) = 

∫ t 

0 

ˆ λa ( τ ) dτ, (2.38)

ˆ m d ( t ) = 

∫ t 

0 

ˆ λa ( u ) ̂  G ( t − u ) du, (2.39)

where estimates ˆ λa (u ) and 

ˆ G (u ) are the values of function λa (u )

and G (u ) that satisfy � = 

ˆ �. For instance, if the arrival process has

a log-linear arrival rate with parameters α0 and α1 and the ser-

vice duration has a log-normal distribution with parameters μ and

σ , then the maximum-likelihood estimate is ˆ � = ( ̂  α0 , ˆ α1 , ˆ μ, ˆ σ ) T .

Point estimates of m a (t) and m d (t) are obtained as follows: 

ˆ m a ( t ) = 

∫ t 

0 

ˆ λa ( τ ) dτ

= 

∫ t 

0 

e ˆ α0 + ̂ α1 τ dτ

= 

e ˆ α0 

ˆ α1 

(
e ˆ α1 t − 1 

)
, (2.40)
a

ˆ 
 d ( t ) = 

∫ t 

0 

ˆ λa ( u ) ̂  G ( t − u ) du 

= 

∫ t 

0 

e ˆ α0 + ̂ α1 u �

(
ln ( t − u ) − ˆ μ

ˆ σ

)
du. (2.41)

However, to obtain the confidence intervals of m a (t) and m d (t) ,

t is unreasonable to simply substitute the upper and lower con-

dence limits of each parameter. When m a (t) and m d (t) are not

onotonic, the upper confidence limit may be even smaller than

he lower confidence limit. Therefore, we propose a combination

f the bootstrap method and the delta method for obtaining the

pproximate confidence intervals. 

First, the covariance matrix, which is denoted by V, of ˆ � is

eeded. The asymptotic property of MLE has been used in previ-

us studies to obtain V . The asymptotic property still holds under

ppropriate regularity conditions because L ( D, �) is a special case

f the marginal and conditional likelihood (Wu et al., 2007) . Sup-

ose n → ∞ . We have 

ˆ �n − �
)

→ N 

(
0 , 

I ( �) 
−1 

n 

)
, n → ∞ , (2.42)

here I(�) is the Fisher information matrix of �. The covariance

atrix V is obtained as I (�) −1 

n . I(�) is typically estimated by the

bserved Fisher information matrix. However, the form of the

ikelihood function L is too complex for us to obtain the second

erivative of logL analytically. We could obtain the observed

isher information matrix numerically; however, we would still

ace difficulties implementing numerical methods and obtaining

he estimation error due to the high complexity of L . Therefore,

e propose a parametric bootstrap method for estimating the

ovariance matrix V . 

R sets of interval censored data are generated from estimate
ˆ and R maximum-likelihood estimates, which are denoted as

∗
i 

( i = 1 , 2 , . . . , R ) , are obtained from each set of the generated

nterval censored data. The sample covariance matrix of the R es-

imates can be used as an estimate of V . The empirical approxi-

ation is justified by the law of large numbers. If confidence lev-

ls of 0.95 and 0.99 are to be used, then it is advisable to set

 = 999 or higher ( Davison & Hinkley, 1997 ). To generate inter-

al censored data from 

ˆ �, complete data are generated first. We

enerate the exact arrival epoch of each item and the service du-

ation of each item separately and obtain the departure epoch of

ach item accordingly. The generation of the exact epochs from the

onhomogeneous Poisson arrival process in fixed interval ( 0 , t k ]

an be reduced to the generation of a Poisson number of order

tatistics from a fixed density function according to the following

esult ( Lewis & Shedler, 1976 , 1979 ): If T 1 , . . . , T M 

denote the ar-

ival epochs of the nonhomogeneous Poisson arrival process and if

 a ( t k ) = M, then conditional on having observed M(> 0) events in

( 0 , t k ] , the T i s are distributed as the order statistics from a sample

f size M from the distribution function 

 ( t ) = 

m a ( t ) − m a ( 0 ) 

m a ( t k ) − m a ( 0 ) 
( 0 ≤ t ≤ t k ) . (2.43)

The proof is presented in Chapter 2 of Cox and Lewis (1966) .

he steps that are carried out to estimate the covariance matrix V 

re as follows: 

Step 1. Set i = 1 and R = 10 0 0 . 

Step 2. Generate the total number of arrivals M in time interval

( 0 , t k ] based on mean ˆ m a ( t k ) . 

Step 3. Generate M order statistics t 1 a , t 
2 
a , . . . , t 

M 

a from cdf 

 ( t ) = 

m a ( t ) − m a ( 0 ) 

m a ( t k ) − m a ( 0 ) 
( 0 ≤ t ≤ t k ) , 

s the exact arrival epochs of the items in time interval ( 0 , t ] . 
k 
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Step 4. Generate service durations s 1 , s 2 , . . . , s M 

of the items

ased on cdf ˆ G (s ) of the service duration. 

Step 5. Obtain the departure epochs of the item t 1 
d 
, t 2 

d 
, . . . , t M 

d 
,

here 

 

j 

d 
= t j a + s j , j = 1 , 2 , . . . , M. 

Step 6. Convert the complete data t 1 a , t 
2 
a , . . . , t 

M 

a , t 
1 
d 
, t 2 

d 
, . . . , t M 

d 

nto interval censored data n a 
1 
, n a 

2 
, . . . , n a 

k 
, n d 

1 
, n d 

2 
, . . . , n d 

k 
, and obtain

he MLE �∗
i 

based on this interval censored data . 

Step 7. Set i = i + 1 and return to Step 2. When i = R , proceed

o Step 8. 

Step 8. Estimate V as 

ˆ 
 = 

1 

R − 1 

R ∑ 

i =1 

(
�∗

i − �̄
)(

�∗
i − �̄

)T 
, (2.44) 

here 

¯ = 

1 

R 

R ∑ 

i =1 

�∗
i . (2.45) 

Using the parametric bootstrap method, we obtain 

ˆ �n − �
)

→ N 

(
0 , ̂  V 

)
, n → ∞ . (2.46) 

Then, the delta method ( Cramer, 1999; Davison, 2003 ) can be

pplied to obtain the approximate distributions of m a (t) and m d (t)

t any fixed time t . The delta method is as follows: If 

ˆ �n − �
)

→ N 

(
0 , 

∑ 

n 

)
, n → ∞ , (2.47) 

here 
∑ 

n represents the variance of ˆ �n , then the function f of pa-

ameter vector � has a similar asymptotic property, 

f 
(

ˆ �n 

)
− f ( �) 

]
→ N 

(
0 , [ ∇ f ( �) ] 

T 

∑ 

n 

∇ f ( �) 

)
, n → ∞ , 

(2.48) 

here ∇ f (�) denotes the gradient of f with respect to parameter

ector �. Since ˆ m a and ˆ m d are the values of functions m a and m d 

iven estimate ˆ �, via formula (2.46) , where ˆ V is equivalent to 
∑ 

n 

n formula ( 2.47 ), we can obtain 

ˆ 
 a ( t ) − m a ( t ) → N 

(
0 , [ ∇ m a ( t ) ] 

T ˆ V [ ∇ m a ( t ) ] 
)
, n → ∞ , (2.49) 

ˆ 
 d ( t ) − m d ( t ) → N 

(
0 , [ ∇ m d ( t ) ] 

T ˆ V [ ∇ m d ( t ) ] 
)
, n → ∞ , (2.50) 

here ∇ m a (t) and ∇ m d (t) denote the gradients of m a and m d 

ith respect to parameter vector � at any fixed time t . Since the

xpressions of ∇ m a (t) and ∇ m d (t) still contain parameter vec-

or �, when n is large, the approximate covariances can be esti-

ated as [ ∇ ˆ m a (t) ] T ˆ V [ ∇ ˆ m a (t) ] and [ ∇ ˆ m d (t) ] T ˆ V [ ∇ ˆ m d (t) ] , respec-

ively, where ∇ ˆ m a (t) and ∇ ˆ m d (t) denote the values of ∇ m a (t)

nd ∇ m d (t) that satisfy � = 

ˆ � at any fixed time t . Therefore, we

an obtain the approximate 1 − α confidence intervals for m a (t)

nd m d (t) : 

ˆ m a ( t ) − Z 1 − α
2 

√ [∇ 

ˆ m a ( t ) 
]T 

ˆ V 

[∇ 

ˆ m a ( t ) 
]
, ˆ m a ( t ) 

+ Z 1 − α
2 

√ [∇ 

ˆ m a ( t ) 
]T 

ˆ V 

[∇ 

ˆ m a ( t ) 
] ]

, (2.51) 

ˆ m d ( t ) − Z 1 − α
2 

√ [∇ 

ˆ m d ( t ) 
]T 

ˆ V 

[∇ 

ˆ m d ( t ) 
]
, ˆ m d ( t ) 

+ Z 1 − α
2 

√ [∇ 

ˆ m d ( t ) 
]T 

ˆ V 

[∇ 

ˆ m d ( t ) 
]]

, (2.52) 

here Z 1 − α
2 

denotes quantile 1 − α
2 of the standard normal distri-

ution. 
. Simulation study 

To study the goodness-of-fit performance of the proposed MLE

ethod in queueing systems, a simulation study was conducted.

e simulate cyclic arrivals since many service facilities, such as

all centres and hospitals, follow periodic patterns. For simplicity,

e consider the following arrival rate function: 

a ( t ) = λ + Asin 

(
2 πt 

T 0 

)
, (3.1) 

here λ is the overall mean arrival rate, A is the amplitude of the

rrival function and T 0 is its period. Motivated by the many practi-

al cases in which a daily cycle is evident, we set λ = 10 , A = 5 and

 0 = 24 hours. Our proposed MLE method is applicable to general

ervice duration distributions; here, we study the exponential ser-

ice duration distribution and the log-normal service duration dis-

ribution, which are the two most commonly used service duration

istributions for modelling queueing systems in practice ( Bertsimas

 Doan, 2010; Brown et al., 2005; Gans et al., 2003 ). For an expo-

ential service duration with cdf 

 ( s ) = 1 − e −υs , 

e set υ = 2 . For a log-normal service duration with cdf 

 ( s ) = �

(
ln ( s ) − μ

σ

)
, 

e set μ = −1 . 2 and σ = 1 . Note that μ here does not denote the

ean of the service duration. For comparative purpose, we set the

arameters as described above so that the exponential service du-

ation and the log-normal service duration have the same mean

f half an hour. We set the total time to T = 48 and simulate the

omplete data in time interval ( 0 , 48 ] via the same method as

n Step 2-Step 5 in the bootstrap method that was proposed in

ection 2.3 . The exact arrival epochs of the items in time inter-

al ( 0 , t k ] , which are denoted as t 1 a , t 
2 
a , . . . , t 

M 

a , are generated as M

rder statistics from cdf 

 ( t ) = 

2 πλt + A T 0 
[
1 − cos 

(
2 πt 
T 0 

)]
2 πλT + A T 0 

[
1 − cos 

(
2 πT 

T 0 

)] ( 0 ≤ t ≤ T ) . (3.2) 

 

1 
a , t 

2 
a , . . . , t 

M 

a can be generated via inverse transform sampling. Af-

er obtaining the complete data, we convert them into interval

ensored data by dividing the total time T into N equal intervals.

he impact of the number of intervals on the arrival process for in-

erval censored data has been studied ( Massey et al., 1996 ). We ob-

ain results via point estimation and interval estimation for study-

ng the impact of the number of intervals on the whole queueing

ystem. 

.1. Point estimation 

We compare the maximum-likelihood estimates of model pa-

ameters for various numbers of intervals with the same total time

f T = 48 . For both the exponential service duration distribution

nd the log-normal service duration distribution, we simulate 10 0 0

ets of complete data. We divide each set of complete data into N

qual intervals and obtain a single set of interval censored data. 

Given the interval censored data, the MLE method that was pro-

osed in Section 2.2 is used to obtain the maximum-likelihood

stimates. The maximum-likelihood estimate ˆ � of the parameter

ector can be obtained as the maximizer of likelihood function L ,

hich is formulated as in formula (2.26) . For the exponential ser-

ice duration distribution, p 1 
i 

and p 2 
i 

in likelihood function L are

btained as 
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n  
p 1 i = 

q i 
1 − p i 

, 

p 2 i = 

{
λ( t i − t i −1 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i −1 

T 0 

)
− cos 

(
2 πt i 

T 0 

)] }−1 

×
∫ t i 

t i −1 

(
1 − e −μ( t i −y ) 

)[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy, i = 1 , 2 , . . . , k, 

(3.3)

where 

p i = 

{
λ( t i −1 − t i 0 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i 0 

T 0 

)
− cos 

(
2 πt i −1 

T 0 

)] }−1 

×
∫ t i −1 

t i 0 

(
1 − e −μ( t i −1 −y ) 

)[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy, (3.4)

q i = 

{
λ( t i −1 − t i 0 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i 0 

T 0 

)
− cos 

(
2 πt i −1 

T 0 

)] }−1 

×
∫ t i −1 

t i 0 

(
e −μ( t i −1 −y ) − e −μ( t i −y ) 

)[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy. (3.5)

For the log-normal service duration distribution, p 1 
i 

and p 2 
i 

are

obtained as 

p 1 i = 

q i 
1 − p i 

, 

p 2 i = 

{
λ( t i − t i −1 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i −1 

T 0 

)
− cos 

(
2 πt i 

T 0 

)] }−1 

×
∫ t i 

t i −1 

�

(
ln ( t i − y ) − μ

σ

)[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy, 

i = 1 , 2 , . . . , k, (3.6)

where 

p i = 

{
λ( t i −1 − t i 0 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i 0 

T 0 

)
− cos 

(
2 πt i −1 

T 0 

)] }−1 

×
∫ t i −1 

t i 0 

�

(
ln ( t i −1 − y ) − μ

σ

)[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy, (3.7)

q i = 

{
λ( t i −1 − t i 0 ) + 

A T 0 
2 π

[ 
cos 

(
2 πt i 0 

T 0 

)
− cos 

(
2 πt i −1 

T 0 

)] }−1 

×
∫ t i −1 

t i 0 

[
�

(
ln ( t i − y ) − μ

σ

)
− �

(
ln ( t i −1 − y ) − μ

σ

)]
×
[ 
λ + Asin 

(
2 πy 

T 0 

)] 
dy. (3.8)

For computational efficiency, we calculate ˆ � as the minimizer

of −logL . Since the form of logL is complex, obtaining the derivative

information of logL , either analytically or numerically, can be un-

reliable or time-consuming. Therefore, we apply the Nelder–Mead

simplex algorithm ( Lagarias, Reeds, Wright & Wright, 1998 ), which

is a derivative-free method that does not use numerical or analytic

gradients, to obtain the minimizer ˆ �. In every iteration in the al-

gorithm, the values of the integrals in p i , q i and p 2 
i 

are obtained

via the adaptive numerical integration algorithm. The absolute er-

ror tolerance is set to 10 −8 and the relative error tolerance 10 −6 . 

For the 10 0 0 sets of interval censored data, 10 0 0 estimates

are obtained via the proposed MLE method. For any set of in-

terval censored data, given estimate ˆ �, values of p 1 
i 

and p 2 
i 

are

between 0 and 1, corresponding with the definitions of p 1 
i 

and

p 2 
i 
—probabilities of events. In the case of log-normal service dura-

tions, the relative errors of the numerical integrations in formulas
3.6)–(3.8) are all smaller than 9 × 10 −7 . The numbers of subinter-

als produced in the subdivision process range from 1 to 12. As

 → ∞ , the interval censored data become complete data. Given

he complete data, we can infer λa (t) from the arrival process and

 from the service duration separately via the MLE method. The

ample mean and standard deviation of each parameter over 10 0 0

aximum-likelihood estimates are listed in Table 1 (exponential

ervice duration) and Table 2 (log-normal service duration). N = ∞
epresents complete data. The means of relative errors (MREs),

hich are expressed as 

RE = 

1 

4 

⎡ ⎣ 

∣∣∣ˆ λ − λ
∣∣∣

λ
+ 

∣∣ ˆ A − A 

∣∣
A 

+ 

∣∣̂ T 0 − T 0 
∣∣

T 0 
+ 

| ̂  υ − υ| 
μ

⎤ ⎦ , (3.9)

RE = 

1 

5 

⎡ ⎣ 

∣∣∣ˆ λ − λ
∣∣∣

λ
+ 

∣∣ ˆ A − A 

∣∣
A 

+ 

∣∣̂ T 0 − T 0 
∣∣

T 0 
+ 

| ̂  μ − μ| 
μ

+ 

| ̂  σ − σ | 
σ

⎤ ⎦ ,

(3.10)

re used to evaluate the goodness-of-fit performance for mod-

ls with the exponential service duration distribution (formula

3.9) ) and the log-normal service duration distribution (formula

3.10) ), respectively. A lower value of MRE corresponds to higher

oodness-of-fit performance. 

Overall, the sample means of each parameter for various num-

ers of intervals are close to the true value of each parameter. All

REs are less than 5%; hence, the goodness-of-fit performance is

atisfactory. The estimates become more accurate as N increases,

specially for parameters that correspond to the service duration.

he MREs are low (less than 1%) for models with exponential ser-

ice durations, even when the number of intervals N is small (8).

he log-normal service duration distribution has two parameters

nd, thus, a more complicated form than the exponential service

uration distribution, which has only one parameter. The larger

arameter space and the more complex form of the log-normal

istribution leads to larger MREs compared to models with expo-

ential service durations. Although the MRE for models with log-

ormal service durations given complete data is twice the MRE

or models with exponential service durations given complete data,

ur proposed MLE method for models with log-normal service du-

ations still performs well when N is large: almost all MREs for

odels with log-normal service durations are less than 1% when

is large. A small value of N corresponds to limited information.

he smaller N is, the more information is lost. When N = 8 , we

nly obtain data every 6 hours, which is a quarter of the period of

4 hours. A substantial amount of information cannot not be ob-

ained from the data; hence, the comparatively high MRE ( 4 . 8% )

or models with log-normal service durations is reasonable. Our

roposed MLE method for models with exponential service dura-

ions still performs well despite the loss of information. The sam-

le means of each parameter as N increases are shown in Fig. 2

exponential service duration) and Fig. 3 (log-normal service du-

ation). As N increases, the sample mean of each parameter ap-

roaches the sample mean given complete data. 

.2. Interval estimation 

For T = 48 , we simulate a set of complete data for exponential

nd log-normal service durations and compare the interval esti-

ates of m a and m d for various numbers of intervals N. For each

xed value of N, a set of interval censored data is obtained from

he complete data. From the interval censored data, the estimate
ˆ is obtained via the proposed MLE method. In the cases of expo-

ential service duration distribution, point estimates of m a (t) and
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Table 1 

Comparison of parameter estimates using various numbers of intervals N (exponential service duration). SD represents the sample standard deviation. 

Number of 

intervals N

ˆ λ ˆ A ̂ T 0 ˆ υ MRE (%) 

Mean SD Mean SD Mean SD Mean SD 

8 10.00 0.45 5.06 0.71 24.04 0.44 2.02 0.31 0.61 

16 10.00 0.45 5.05 0.66 24.04 0.42 2.01 0.21 0.40 

24 10.00 0.45 5.05 0.65 24.04 0.41 2.01 0.16 0.39 

48 9.99 0.45 5.05 0.65 24.02 0.41 2.00 0.12 0.33 

96 10.01 0.44 5.06 0.62 24.01 0.41 2.00 0.10 0.37 

120 9.98 0.46 5.03 0.62 24.01 0.39 2.01 0.09 0.36 

160 9.98 0.46 5.03 0.61 24.01 0.41 2.01 0.09 0.35 

240 9.98 0.45 5.03 0.62 24.01 0.39 2.01 0.09 0.35 

320 9.98 0.46 5.03 0.61 24.01 0.39 2.00 0.09 0.26 

480 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.23 

600 9.99 0.45 5.03 0.60 24.00 0.42 2.00 0.09 0.24 

960 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.23 

∞ 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.24 

Table 2 

Comparison of parameter estimates using various numbers of intervals N (log-normal service duration). SD represents the sample standard deviation. 

Number of 

intervals N

ˆ λ ˆ A ̂ T 0 ˆ μ ˆ σ MRE (%) 

Mean SD Mean SD Mean SD Mean SD Mean SD 

8 10.00 0.46 5.09 0.69 24.05 0.46 −1.44 0.90 1.02 0.71 4.78 

16 10.00 0.46 5.07 0.62 24.04 0.43 −1.21 0.53 0.87 0.54 3.09 

24 10.00 0.46 5.06 0.61 24.04 0.42 −1.16 0.41 0.84 0.48 4.20 

48 10.01 0.48 5.05 0.61 24.03 0.42 −1.16 0.23 0.92 0.27 2.47 

96 10.00 0.46 5.02 0.62 24.02 0.39 −1.19 0.14 0.98 0.14 0.62 

120 9.99 0.45 5.02 0.63 24.02 0.40 −1.18 0.12 0.98 0.12 0.81 

160 10.02 0.45 5.06 0.63 24.03 0.41 −1.19 0.11 0.99 0.11 0.81 

240 9.99 0.45 5.02 0.62 24.02 0.40 −1.18 0.11 0.98 0.11 0.84 

320 9.99 0.46 5.03 0.62 24.02 0.41 −1.18 0.12 0.98 0.13 0.88 

480 10.01 0.45 5.09 0.62 24.02 0.42 −1.18 0.13 0.98 0.15 1.17 

600 10.01 0.45 5.05 0.62 24.03 0.42 −1.18 0.13 0.98 0.16 0.98 

960 10.01 0.45 5.09 0.62 24.02 0.42 −1.19 0.14 0.99 0.16 0.64 

∞ 10.01 0.45 5.09 0.62 24.02 0.42 −1.20 0.05 1.00 0.03 0.48 
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 d (t) at any fixed time t given estimate ˆ � = ( ̂ λ, ˆ A , ̂  T 0 , ˆ υ) T are ob-

ained as follows: 

ˆ 
 a ( t ) = 

ˆ λt + 

ˆ A ̂

 T 0 
2 π

[
1 − cos 

(
2 πt 

ˆ T 0 

)]
, (3.11) 

ˆ 
 d ( t ) = 

∫ t 

0 

[
ˆ λ + 

ˆ A sin 

(
2 πu 

ˆ T 0 

)][
1 − e − ˆ υ( t−u ) 

]
du. (3.12) 

Similarly, in the cases of log-normal service duration distribu-

ion, point estimates of m a (t) and m d (t) at any fixed time t given

stimate ˆ � = ( ̂ λ, ˆ A , ̂  T 0 , ˆ μ, ˆ σ ) T are obtained as follows: 

ˆ 
 a ( t ) = 

ˆ λt + 

ˆ A ̂

 T 0 
2 π

[
1 − cos 

(
2 πt 

ˆ T 0 

)]
, (3.13) 

ˆ 
 d ( t ) = 

∫ t 

0 

[
ˆ λ + 

ˆ A sin 

(
2 πu 

ˆ T 0 

)][
�

(
ln ( t − u ) − ˆ μ

ˆ σ

)]
du. (3.14) 

Given estimate ˆ �, the parametric bootstrap method in

ection 2.3 is applied to obtain the covariance matrix estimate ˆ V ,

nd we obtain the 95% confidence intervals for m a (t) and m d (t) at

ny fixed time t via formulas (2.51) & ( 2.52 ). In the cases of expo-

ential service duration distribution, ∇ ˆ m a (t) and ∇ ˆ m d (t) at any

xed time t in formulas (2.51) & ( 2.52 ) are obtained as 
 

ˆ m a ( t ) = 

(
∂ m a ( t ) 

∂λ
, 
∂ m a ( t ) 

∂A 

, 
∂ m a ( t ) 

∂ T 0 

)T 
∣∣∣∣∣
λ= ̂ λ,A = ̂  A, T 0 = ̂ T 0 

= 

⎛ ⎝ 

t 
T 0 
2 π

[
1 − cos 

(
2 πt 
T 0 

)]
∂ 

∂ T 0 

{
λt + 

A T 0 
2 π

[
1 − cos 

(
2 πt 
T 0 

)]}
⎞ ⎠ 

∣∣∣∣∣∣
λ= ̂ λ,A = ̂  A, T 0 = ̂ T 0 

, (3.15) 

 ˆ m d ( t ) = 

(
∂ m d ( t ) 

∂λ
, 
∂ m d ( t ) 

∂A 
, 
∂ m d ( t ) 

∂ T 0 
, 
∂ m d ( t ) 

∂υ

)T 
∣∣∣∣∣
λ= ̂ λ,A = ̂  A, T 0 = ̂ T 0 ,υ= ̂ υ

, 

(3.16) 

∂ m a (t) 
∂ T 0 

can also be obtained analytically; we do not present the

nalytical result due to its length. The gradient of m d (t) is difficult

o obtain since the form of m d (t) is complex. Therefore, ∇ ˆ m d (t)

s obtained via numerical differentiation. In the cases with log-

ormal service duration distribution, ∇ ˆ m a (t) and ∇ ˆ m d (t) are ob-

ained via similar approaches. 

We compare the differences between the upper and lower

onfidence limits at time t = 48 , which are the lengths of the

onfidence intervals and are denoted as LCs, among various values

f N ; the results are listed in Table 3 . For any value of N, the con-

dence interval of m a ( 48 ) is slightly longer than that of m d ( 48 )

or both exponential and log-normal service durations. In this sim-

lation study, exponential and log-normal service durations with

he same mean value are paired with the same arrival rate. The

odels with exponential service durations and log-normal service

urations do not show substantial differences in terms of LC. The

engths of the confidence intervals as N increases are shown in
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Fig. 2. Sample means of model parameters using various numbers of intervals N (exponential service duration). 

Table 3 

Lengths of confidence interval for various numbers of intervals N. 

Number of intervals N 8 16 24 48 96 120 160 

m a ( 48 ) exponential 85.39 83.91 88.36 86.39 82.21 86.28 86.15 

log-normal 90.61 87.74 87.01 90.92 88.38 84.94 84.86 

m d ( 48 ) exponential 84.53 83.13 87.39 85.38 81.35 85.37 85.21 

log-normal 90.36 87.23 86.06 89.74 87.40 83.99 83.81 

Number of intervals N 240 320 480 600 960 ∞ 

m a ( 48 ) exponential 86.24 88.74 86.60 85.70 86.60 86.56 

log-normal 85.24 87.13 85.67 85.99 85.67 85.61 

m d ( 48 ) exponential 85.31 87.81 85.64 84.72 85.65 85.61 

log-normal 84.28 86.09 84.76 85.03 84.75 84.67 
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Fig. 4 (exponential service duration) and Fig. 5 (log-normal service

duration). As N increases, the LC trends of m a ( 48 ) and m d ( 48 )

are the same, for both exponential and log-normal service dura-

tions. LC does not change substantially with N. Since no previous

study is available for comparison, we compare the LCs for various

numbers of intervals N with the LC for complete data. All LCs

are in the 95% −105% range of the LC for complete data for the

model with exponential service duration and in the 93% −107%
ange of the LC for complete data for the model with log-normal

ervice duration. The LCs of both m a ( 48 ) and m d ( 48 ) approach

he LC for complete data as N increases. These results demonstrate

hat the confidence intervals that are obtained via our procedure

re close to those that are obtained via MLE for complete data,

egardless of the number of intervals. Different service duration

istributions that have the same mean result in similar confidence

ntervals; hence, we can obtain similar confidence intervals using
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Fig. 3. Sample means of model parameters using various numbers of intervals N (log-normal service duration). 
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Fig. 4. Lengths of confidence intervals of m a ( 48 ) and m d ( 48 ) for various numbers of intervals N (exponential service duration). 

Fig. 5. Lengths of confidence intervals of m a ( 48 ) and m d ( 48 ) for various numbers of intervals N (log-normal service duration). 
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different service duration distributions to fit against data in

practical scenarios. 

Our proposed MLE method is applicable to general service du-

ration distributions. The simulation results for models with both

exponential and log-normal service durations demonstrate that our

proposed MLE method realizes satisfactory goodness-of-fit perfor-

mance. In the simulation study, the sample size is not large. We

only generalize data in time interval ( 0 , 48 ] , which is a realization

of only two periods, and the results are already satisfactory; there-

fore, our proposed MLE method performs well even with a small

sample that has limited information. Our procedure enables the es-

timation of model parameters m a and m d without having to keep

track of each item from arrival to departure, which reduces the

amount of resources that are expended monitoring items and stor-

ing data. The point and interval estimations of our proposed MLE

method for models with exponential service durations perform ex-

tremely well with small MREs and LCs that are similar to the LC
or complete data, regardless of the number of intervals. For mod-

ls with log-normal service durations, the MREs are small overall

nd more accurate results can be obtained when the number of in-

ervals is large. The LC is also similar to that for complete data, re-

ardless of the number of intervals. These results demonstrate that

n practical scenarios, we need not continuously monitor items to

btain complete data; we can observe at fixed time points and ob-

ain interval censored data instead. 

. Application example 

We apply our method to a large-scale software testing system

 Yang, 1996 ) to evaluate the goodness-of-fit performance. In a soft-

are system, developers assess the system and detect and correct

he faults inside before it can be released. Faults are detected when

oftware is executed according to specified test cases. The fault

etection process is assumed to be a nonhomogeneous Poisson
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Table 4 

Fault counts of the P1 system. 

Time t i Number of detected faults n a 
i 

Number of removed faults n d 
i 

Time t i Number of detected faults n a 
i 

Number of removed faults n d 
i 

1 2 2 44 79 119 

2 0 0 45 183 60 

3 0 0 46 129 108 

4 1 0 47 176 196 

5 2 0 48 106 129 

6 2 0 49 62 65 

7 3 2 50 49 57 

8 12 4 51 99 105 

9 8 2 52 43 42 

10 2 1 53 47 96 

11 11 2 54 174 109 

12 2 4 55 179 75 

13 0 0 56 229 328 

14 1 1 57 65 30 

15 0 1 58 66 121 

16 6 2 59 40 105 

17 4 4 60 54 128 

18 0 7 61 31 74 

19 5 0 62 103 41 

20 3 1 63 63 33 

21 2 0 64 107 83 

22 2 1 65 59 80 

23 6 0 66 69 47 

24 7 0 67 78 90 

25 5 5 68 62 98 

26 20 21 69 97 69 

27 34 12 70 58 48 

28 46 17 71 65 50 

29 21 11 72 53 49 

30 55 31 73 139 136 

31 61 42 74 60 57 

32 58 24 75 50 58 

33 60 30 76 70 119 

34 60 46 77 31 52 

35 109 34 78 44 131 

36 76 35 79 63 28 

37 110 55 80 36 82 

38 86 117 81 38 51 

39 73 65 82 28 38 

40 63 59 83 18 49 

41 36 18 84 17 104 

42 120 54 85 25 6 

43 112 47 86 8 9 
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rocess, which is commonly used and has successfully measured

he fault detection process ( Okamura, Dohi & Osaki, 2013; Pham,

0 0 0; Schneidewind, 20 03; Xie, 1991 ). After each fault has been

etected, a corrective action is performed immediately. Then, the

etected fault is removed after developers spend time making the

orrection. The whole software testing system can be considered

s an M t /G/ ∞ queueing system, where the fault detection process

an be viewed as the arrival process and the fault removal pro-

ess as the departure process. In practice, it is difficult to specify

he exact number of servers for the fault detection and removal

rocess in a large software development environment, where ac-

ivities are usually carried out in parallel. For example, a mem-

er of a fault-removal team may be resolving several faults at the

ame time. Therefore, one team member can be counted as more

han one server from a service perspective. This scenario is prac-

ically equivalent to an infinite-server scenario, especially for large

ystems that involve many team members ( Yang, 1996 ). Although

his software testing system does not have infinite servers, our fit-

ing results below demonstrate that the M t /G/ ∞ queueing system

erves as an efficient model. 

In the software testing system P1, the number of faults that are

etected and removed in each fixed time interval is available. The

ata set is listed in Table 4 . 

The cumulative numbers of arrivals and departures by time t i 
re plotted in Fig. 6 . Given the shape of the curve for the ar-
ival process in Fig. 6 , we apply the inflection S-shaped arrival rate

 Ohba, 1984 ), which is expressed as 

a ( t ) = 

ab ( 1 + c ) e −bt (
1 + c e −bt 

)2 
, (4.1) 

aired with exponential service duration and log-normal service

uration to fit against the real data. 

The maximum-likelihood estimate ˆ � is obtained via the MLE

ethod that was proposed above. In the case of an exponential

ervice duration distribution, p 1 
i 

and p 2 
i 

in likelihood function L ,

hich is presented as formula (2.26) , are obtained as 

p 1 i = 

q i 
1 − p i 

, p 2 i = 

[ 

a 
(
1 − e −b t i 

)
1 + c e −b t i 

−
a 
(
1 − e −b t i −1 

)
1 + c e −b t i −1 

] −1 

×
∫ t i 

t i −1 

(
1 − e −μ( t i −y ) 

)ab ( 1 + c ) e −by (
1 + c e −by 

)2 
dy, (4.2) 

here 

p i = 

[ 

a 
(
1 − e −b t i −1 

)
1 + c e −b t i −1 

−
a 
(
1 − e −b t i 0 

)
1 + c e −b t i 0 

] −1 

×
∫ t i −1 

t i 0 

(
1 − e −μ( t i −1 −y ) 

)ab ( 1 + c ) e −by (
1 + c e −by 

)2 
dy, (4.3) 
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Fig. 6. Cumulative numbers of arrivals and departures in system P1. 
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q i = 

[ 

a 
(
1 −e −b t i −1 

)
1 + c e −b t i −1 

−
a 
(
1 −e −b t i 0 

)
1 + c e −b t i 0 

] −1 ∫ t i −1 

t i 0 

(
e −μ( t i −1 −y ) −e −μ( t i −y ) 

)
× ab ( 1 + c ) e −by (

1 + c e −by 
)2 

dy, 

i = 1 , 2 , . . . , k. (4.4)

In the case of a log-normal service duration distribution,

p 1 
i 

and p 2 
i 

are obtained as 

p 1 i = 

q i 
1 − p i 

, 

p 2 i = 

[ 

a 
(
1 − e −b t i 

)
1 + c e −b t i 

−
a 
(
1 − e −b t i −1 

)
1 + c e −b t i −1 

] −1 

×
∫ t i 

t i −1 

�

(
ln ( t i − y ) − μ

σ

)
ab ( 1 + c ) e −by (

1 + c e −by 
)2 

dy. (4.5)

where 

p i = 

[ 

a 
(
1 − e −b t i −1 

)
1 + c e −b t i −1 

−
a 
(
1 − e −b t i 0 

)
1 + c e −b t i 0 

] −1 

×
∫ t i −1 

t i 0 

�

(
ln ( t i −1 − y ) − μ

σ

)
ab ( 1 + c ) e −by (

1 + c e −by 
)2 

dy, (4.6)

q i = 

[ 

a 
(
1 − e −b t i −1 

)
1 + c e −b t i −1 

−
a 
(
1 − e −b t i 0 

)
1 + c e −b t i 0 

] −1 

×
∫ t i −1 

t i 0 

[
�

(
ln ( t i − y ) − μ

σ

)
− �

(
ln ( t i −1 − y ) − μ

σ

)]
× ab ( 1 + c ) e −by (

1 + c e −by 
)2 

dy, 

i = 1 , 2 , . . . , k. (4.7)

Via the same approach as in Section 3.1 , we obtain 

ˆ � as the

minimizer of −logL and apply the Nelder-Mead simplex algorithm
o obtain minimizer ˆ � since the form of L is complex. The val-

es of the integrals in p i , q i and p 2 
i 

are obtained via the adap-

ive numerical integration algorithm. The estimates of the model

arameters that were obtained via the proposed MLE method are

isted in Table 5 . In the case of exponential service durations, given

stimate ˆ �, the values of p 1 
i 

are all 0.1563 for i = 5 , 6 , . . . , 86 ,

nd the values of p 2 
i 

range from 0.0791 to 0.0816. In the case

f log-normal service durations, given estimate ˆ �, the values of

p 1 
i 

range from 0.1091 to 0.2099, and the values of p 2 
i 

range from

.0688 to 0.0718. The relative errors of the numerical integrations

n formulas (4.5) -(4.7) are all smaller than 9 × 10 −7 . The numbers

f subintervals produced in the subdivision process range from

 to 9. 

In the case of the exponential service duration distribution,

iven estimate ˆ � = ( ̂  a , ̂  b , ̂  c , ˆ υ) T , the point estimates of m a (t) and

 d (t) at any fixed time t are obtained as 

ˆ 
 a (t) = 

ˆ a ( 1 − e −ˆ b t ) 

1 + 

ˆ c e −ˆ b t 
, (4.8)

ˆ 
 d ( t ) = 

∫ t 

0 

[ 

ˆ a ̂ b 
(
1 + 

ˆ c 
)
e −ˆ b u (

1 + 

ˆ c e −ˆ b u 
)2 

] [
1 − e − ˆ υ( t−u ) 

]
du. (4.9)

In the case of the log-normal service duration distribu-

ion, given estimate ˆ � = ( ̂  a , ̂  b , ̂  c , ˆ μ, ˆ σ ) T , the point estimates of

 a (t) and m d (t) at any fixed time t are obtained as 

ˆ 
 a ( t ) = 

ˆ a 

(
1 − e −ˆ b t 

)
1 + 

ˆ c e −ˆ b t 
, (4.10)

ˆ 
 d ( t ) = 

∫ t 

0 

[ 

ˆ a ̂ b 
(
1 + 

ˆ c 
)
e −ˆ b u (

1 + 

ˆ c e −ˆ b u 
)2 

] [
�

(
ln ( t − u ) − ˆ μ

ˆ σ

)]
du. (4.11)

In both cases, given estimate ˆ �, the parametric bootstrap

ethod is applied to obtain the covariance matrix estimate ˆ V , and

e calculate the 95% confidence intervals for m a (t) and m d (t) at

ny fixed time t via formulas (2.51) & (2.52) . In the case of the

xponential service duration distribution, ∇ ˆ m a (t) and ∇ ˆ m d (t) at

ny fixed time t in formulas (2.51) & ( 2.52 ) are obtained as 

 ̂

 m a ( t ) = 

(
∂ m a ( t ) 

∂a 
, 
∂ m a ( t ) 

∂b 
, 
∂ m a ( t ) 

∂c 

)T 
∣∣∣∣∣

a = ̂ a ,b= ̂ b , c= ̂ c 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 − e −bt 

1 + c e −bt 

∂ 

∂b 

[ 

a 
(
1 − e −bt 

)
1 + c e −bt 

] 

a e −bt 
(
e −bt − 1 

)(
1 + c e −bt 

)2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a = ̂ a ,b= ̂ b , c= ̂ c 

, (4.12)

 

ˆ m d ( t ) = 

(
∂ m d ( t ) 

∂a 
, 
∂ m d ( t ) 

∂b 
, 
∂ m d ( t ) 

∂c 
, 
∂ m d ( t ) 

∂υ

)T 
∣∣∣∣∣

a = ̂ a ,b= ̂ b ,c= ̂ c ,υ= ̂ υ

,

(4.13)

∂ m a (t) 
∂b 

can also be obtained analytically; we do not present

he analytical result due to its length. As in the cases in the

imulation study, ∇ ˆ m d (t) is obtained via numerical differen-

iation since the form of m d (t) is complex. In the case of a

og-normal service duration distribution, ∇ ˆ m a (t) and ∇ ˆ m d (t)

re obtained via similar approaches. The point and interval esti-

ates of m a ( t ) and m ( t ) ( i = 1 , 2 , . . . , 86) versus the observed
i d i 
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Table 5 

Comparison of estimates and goodness-of-fit between the proposed MLE method and Yang’s method. 

Method Parameter estimates MSE

Yang Inflection S-shaped + Exponential service duration ˆ a = 4713 . 33 ˆ b = 0 . 10 

ˆ c = 210 . 26 ̂ υ = 0 . 17 

MS E a = 10 0 02 

MS E d = 9203 

MSE = 9603 

Proposed MLE Inflection S-shaped + Exponential service duration ˆ a = 4721 . 17 ˆ b = 0 . 10 

ˆ c = 194 . 17 ̂ υ = 0 . 17 

MS E a = 9648 

MS E d = 8866 

MSE = 9257 

Proposed MLE Inflection S-shaped + Log-normal service duration ˆ a = 4733 . 11 ˆ b = 0 . 10 

ˆ c = 183 . 10 ̂ μ = 1 . 16 ˆ σ = 1 . 22 

MS E a = 9596 

MS E d = 7672 

MSE = 8634 

Fig. 7. Goodness-of-fit for inflection S-shaped arrival paired with exponential service duration. 

d  

d  

i  

d  

f  

d  

[  

s  

r  

i  

w  

s

 

a  

m  

w

M

t  

a

M

t  

c

M

t  

l  

m  

v  

i

 

d  

e  

i  

fl  

o  

m  

c  

a  

s  

d  

b  

o  

t  
ata of both models are plotted in Fig. 7 (exponential service

uration) and Fig. 8 (log-normal service duration). The proposed

nflection S-shaped model, paired with both exponential service

uration and log-normal service duration, fit the data set well

or both the arrival process and the departure process. The confi-

ence intervals of m a ( 86 ) and m d ( 86 ) are [4403.47,4672.53] and

4203.47,4484.26], respectively, for the model with exponential

ervice duration and [440 6.41,46 6 8.38] and [4144.89,4399.4 8],

espectively, for the model with log-normal service duration. The

nterval estimates for the two models do not differ significantly,

hich accords with the results and conclusions of the simulation

tudy. 

Since m a and m d are the means of the cumulative numbers of

rrivals and departures, we use the mean-squared error between

ean m a ( t i ) and actual cumulative number of arrivals 
∑ i 

l=1 n 
a 
l 
,

hich is expressed as 

S E a = 

1 

k 

k ∑ 

i =1 

⎡ ⎣ 

( 

m a ( t i ) −
i ∑ 

l=1 

n 

a 
l 

) 2 
⎤ ⎦ , (4.14) 

o evaluate the goodness-of-fit performance of the arrival process

nd 

S E d = 

1 

k 

k ∑ 

i =1 

⎡ ⎣ 

( 

m d ( t i ) −
i ∑ 

l=1 

n 

d 
l 

) 2 
⎤ ⎦ (4.15) 
a  
o evaluate the goodness-of-fit performance of the departure pro-

ess. In this case, k = 86 . We use the goodness-of-fit criterion, 

SE = 

1 

2 k 

k ∑ 

i =1 

⎡ ⎣ 

( 

m a ( t i ) −
i ∑ 

l=1 

n 

a 
l 

) 2 

+ 

( 

m d ( t i ) −
i ∑ 

l=1 

n 

d 
l 

) 2 
⎤ ⎦ , 

(4.16) 

o evaluate the performances of the proposed models, where a

ower value of MSE corresponds to a higher goodness-of-fit perfor-

ance. The estimates of the model parameters that were obtained

ia Yang’s (1996) method and our proposed MLE method are listed

n Table 5 and the MSEs are compared. 

Yang’s method is limited to models with exponential service

urations, while our proposed MLE method is applicable to gen-

ral service duration distributions and outperforms Yang’s model

n terms of goodness-of-fit. Under the same assumed model (in-

ection S-shaped arrival paired with exponential service duration),

ur proposed MLE method realizes higher goodness-of-fit perfor-

ance than Yang’s model for both the arrival and departure pro-

esses. M SE, M S E a , and MS E d of our proposed MLE method are

ll 4% smaller than those of Yang’s method. In a software testing

ystem, the remaining faults in the system are more difficult to

etect and correct over time since the simple faults have already

een detected and corrected at an early stage. At the late stage

f fault detection and correction, substantial effort and expendi-

ure are required for detecting or correcting even a single fault and

 4% increase in the goodness-of-fit performance can save a large
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Fig. 8. Goodness-of-fit for inflection S-shaped arrival paired with log-normal service duration. 
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ence into account. 
amount of money. The model with log-normal service duration fits

the data set even better: the MSE is 10% smaller than that of Yang’s

method. Our proposed MLE method improves the goodness-of-fit

performance; thus, the expenditure can be reduced. Since our pro-

posed MLE method is applicable to general service duration distri-

butions, more complex service duration distributions can be used

to fit real data and higher goodness-of-fit performance can be re-

alized. In this application example, the MSE of the model with log-

normal service durations is 7% smaller than that of the model with

exponential service durations. In contrast to the simulation study,

where models with exponential service durations realize higher

goodness-of-fit performance, the log-normal service duration dis-

tribution with 2 parameters is more flexible for fitting real data

and realizes higher goodness-of-fit performance compared to the

exponential service duration distribution. 

The application example demonstrates that the goodness-of-fit

performance of our proposed MLE method is satisfactory. We ob-

tain the confidence intervals of m a and m d , which have not been

obtained in other studies. Our proposed MLE method improves the

goodness-of-fit performance and, more importantly, is applicable

to general service duration distributions, including the exponential

service duration distribution in the previous study ( Yang, 1996 ).

Models that have more complex service duration distributions can

yield better goodness-of-fit performance than models with the ex-

ponential service duration distribution. 

5. Conclusions and discussion 

We provide a general framework for dealing with the statistical

inference problem in M t /G/ ∞ queueing systems given interval

censored data. We propose an MLE method for inferring model

parameters. The method is applicable to a general service duration

distribution G . More importantly, we propose a combination of

the bootstrap method and the delta method for inferring the

expected cumulative numbers of arrivals and departures, which

facilitates cost-effective decision-making by service providers. We

study exponential and log-normal service duration distributions in

both a simulation study and an application example. These service
uration distributions are the two most commonly used service

urations for modelling queueing systems in practice and have

een demonstrated to well fit the service duration distribution.

he simulation results for models with both exponential and

og-normal service durations demonstrate that our proposed MLE

ethod realizes satisfactory goodness-of-fit performance. As the

umber of intervals increases, the estimates that are obtained via

ur proposed MLE approach the estimates that are obtained via

LE from complete data. Our procedure enables one to obtain

stimates of model parameters m a and m d without having to keep

rack of each item, which reduces the amount of resources that

re expended for monitoring items and storing data. The point

nd interval estimation approaches in our proposed MLE method

or models with exponential service durations perform extremely

ell, regardless of the number of intervals. For models with

og-normal service durations, the results are satisfactory overall

nd the point estimates are more accurate when the number

f intervals is large. The application example demonstrates that

he goodness-of-fit performance of our proposed MLE method

s satisfactory. The model with a log-normal service duration

istribution outperforms the model with an exponential service

uration distribution in terms of goodness-of-fit in the application

xample when the actual family of service duration distributions

s unknown. Our proposed MLE method enables more complex

ervice duration distributions to be fit against real data and can

ield higher goodness-of-fit performance. 

However, we may encounter difficulties in obtaining the

aximum-likelihood estimates. The form of the likelihood func-

ion is complex; hence, maximum-likelihood estimation is time-

onsuming in parameter estimation and the complement of the

ootstrap method, especially when the number of parameters is

arge or the arrival rate and the service duration distributions

re complex. In future studies, reducing the computational burden

ould be considered, e.g., by implementing the EM algorithm or

tilizing simpler methods to obtain the estimates. Data imputation

ethods could be explored for coping with the interval censored

ata. A Bayesian framework could also be utilized to take experi-
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ppendix A. Ranges of n 

d1 
i 

and n 

d2 
i 

n d1 
i 

denotes the number of items that arrived prior to time

 i −1 and departed in time interval ( t i −1 , t i ] . It should not exceed

he number of items that did not depart prior to time t i −1 or

he number of items that departed in time interval ( t i −1 , t i ] . Prior

o time t i −1 , 
∑ i −1 

l=1 
n a 

l 
items arrived and 

∑ i −1 
l=1 

n d 
l 

items departed;

ence, 
∑ i −1 

l=1 
n a 

l 
−∑ i −1 

l=1 
n d 

l 
items did not depart prior to time t i −1 .

hus, 

 ≤ n 

d1 
i ≤ min 

( 

i −1 ∑ 

l=1 

n 

a 
l −

i −1 ∑ 

l=1 

n 

d 
l , n 

d 
i 

) 

, i = 1 , 2 , . . . , k. (A.1) 

Similarly, n d2 
i 

denotes the number of items that arrived in

ime interval ( t i −1 , t i ] and departed in time interval ( t i −1 , t i ] , which

hould not exceed the number of items that arrived in time inter-

al ( t i −1 , t i ] or the number of items that departed in time interval

( t i −1 , t i ] . Thus, 

 ≤ n 

d2 
i ≤ min 

(
n 

a 
i , n 

d 
i 

)
, i = 1 , 2 , . . . , k. (A.2) 

ppendix B. Formulations of p 

1 
i 

and p 

2 
i 

a) Formulation of p 

2 
i 

To obtain p 2 
i 

( i = 1 , 2 , . . . , k ) , according to the total probability

heorem, 

p 2 i = f ( departe d in time interval ( t i −1 , t i ] | arrived in time 

interval ( t i −1 , t i ]) 

= 

∫ t i 

t i −1 

f ( departe d in time interval ( t i −1 , t i ] | arrived at time y 

in time interval ( t i −1 , t i ]) 

× f ( arrive d at time y in time interval ( t i −1 , t i ] | arrived in 

time interval ( t i −1 , t i ]) dy. (B.1) 

From the properties of Poisson processes, it follows that 

( arrive d prior to time y in time interval ( t i −1 , t i ] 

| arrived in time interval ( t i −1 , t i ] ) 

= 

P ( one arrival in time interval ( t i −1 , y ] , no arrival in time interval ( y, t i ] )

P ( one arrival in time interval ( t i −1 , t i ] ) 
Fig. 9. Range of the s
= 

( m a ( y ) − m a ( t i −1 ) ) e 
−( m a ( y ) −m a ( t i −1 ) ) e −( m a ( t i ) −m a ( y ) ) 

( m a ( t i ) − m a ( t i −1 ) ) e 
−( m a ( t i ) −m a ( t i −1 ) ) 

= 

m a ( y ) − m a ( t i −1 ) 

m a ( t i ) − m a ( t i −1 ) 
. (B.2)

Hence, 

f ( arrive d at time y in time interval ( t i −1 , t i ] | arrived in time 

interval ( t i −1 , t i ]) = 

λa (y ) 

m a ( t i ) − m a ( t i −1 ) 
. (B.3) 

To obtain f ( departe d in time interval ( t i −1 , t i ] | arrived at time 

 in time interval ( t i −1 , t i ] ) , we consider an item that arrived at

ime y ( t i −1 < y ≤ t i ). If it departed in time interval ( t i −1 , t i ] , its ser-

ice duration should not exceed t i − y , as shown in Fig. 9 . 

Thus, 

f ( departe d in time interval ( t i −1 , t i ] | arrived at time y in time 

interval ( t i −1 , t i ] ) = G( t i − y ) . (B.4) 

It follows from (B.1) , (B.3) , and (B.4) that 

p 2 i = [ m a ( t i ) − m a ( t i −1 ) ] 
−1 

∫ t i 

t i −1 

G ( t i − y ) λa (y ) dy. (B.5) 

a) Formulation of p 

1 
i 

For i = 1 , 2 , . . . , k , p 1 
i 

is obtained through p i and q i : 

p 1 i = 

q i 
1 − p i 

. (B.6) 

By total probability theorem, we have 

p i = 

∫ t i −1 

t i 0 

f ( departe d prior to time t i −1 | arrived at time y 

in time interval ( t i 0 , t i −1 ]) 

× f ( arrive d at time y in time interval ( t i 0 , t i −1 ] | arrived 

in time interval ( t i 0 , t i −1 ]) dy, (B.7) 

 i = 

∫ t i −1 

t i 0 

f ( departe d in time interval ( t i −1 , t i ] | arrived at time y 

in time interval ( t i 0 , t i −1 ]) 

× f ( arrive d at time y in time interval ( t i 0 , t i −1 ] | arrived 

in time interval ( t i 0 , t i −1 ]) dy. (B.8) 

Similar as (B.3) , we have 

f ( arrive d at time y in time interval ( t i 0 , t i −1 ] | arrived in time 

interval ( t i 0 , t i −1 ]) = 

λa (y ) 

m a ( t i −1 ) − m a ( t i 0 ) 
. (B.9) 

For an item which arrived at time y ( t i 0 < y ≤ t i −1 ), if it de-

arted prior to time t i −1 , its service duration should be not more

han t i −1 − y , as is shown in Fig. 10 . 
ervice duration. 
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Fig. 10. The range of service duration. 

Fig. 11. Range of the service duration. 
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Thus, 

f ( departe d prior to time t i −1 | arrived at time y in time 

interval ( t i 0 , t i −1 ] ) = G( t i −1 − y ) . (B.10)

If it departed in time interval ( t i −1 , t i ] , its service duration

should not exceed t i − y and should not be less than t i −1 − y , as

shown in Fig. 11 . 

Thus, 

f ( departe d in time interval ( t i −1 , t i ] | arrived at time y in time 

interval ( t i 0 , t i −1 ]) = G( t i − y ) − G( t i −1 − y ) . (B.11)

It follows from (B.7) , (B.9) , and (B.10) that 

p i = [ m a ( t i −1 ) − m a ( t i 0 ) ] 
−1 

∫ t i −1 

t i 0 

G ( t i −1 − y ) λa (y ) dy, (B.12)

and according to (B.8) , (B.9) , and (B.11) , 

q i = [ m a ( t i −1 ) − m a ( t i 0 ) ] 
−1 

∫ t i −1 

t i 0 

[ G ( t i − y ) − G ( t i −1 − y ) ] λa (y ) dy, 

(B.13)

and, consequently, p 1 
i 

by (B.6). 
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