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Abstract

The R package spate implements methodology for modeling of large space-time data
sets. A spatio-temporal Gaussian process is defined through a stochastic partial differen-
tial equation (SPDE) which is solved using spectral methods. In contrast to the traditional
geostatistical way of relying on the covariance function, the spectral SPDE approach is
computationally tractable and provides a realistic space-time parametrization.

This package aims at providing tools for simulating and modeling of spatio-temporal
processes using an SPDE based approach. The package contains functions for obtaining
parametrizations, such as propagator or innovation covariance matrices, of the spatio-
temporal model. This allows for building customized hierarchical Bayesian models using
the SPDE based model at the process stage. The functions of the package then pro-
vide computationally efficient algorithms needed for doing inference with the hierarchical
model. Furthermore, an adaptive Markov chain Monte Carlo (MCMC) algorithm im-
plemented in the package can be used as an algorithm for doing inference without any
additional modeling. This function is flexible and allows for application specific customiz-
ing. The MCMC algorithm supports data that follow a Gaussian or a censored distribution
with point mass at zero. Spatio-temporal covariates can be included in the model through
a regression term.

Keywords: space-time model, large data sets, Gaussian process, physics based model, advection-
diffusion equation, spectral methods, R.

1. Introduction

Increasingly larger spatio-temporal data arise in many fields and applications. For instance,
data sets are obtained from remote sensing satellites or deterministic physical models such as
numerical weather prediction (NWP) models. Hence, there is a growing need for methodology
that can cope with such large data. See Cressie and Wikle (2011) for an introduction and an
overview of spatio-temporal statistics.
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Gaussian processes are often used for modeling data in space and time. A Gaussian process
is defined by specifying a mean and a covariance function. However, directly working with a
spatio-temporal covariance function is computationally unfeasible if data sets are large. Al-
ternatively, a dynamic linear state space model (or a vector autoregression) can be used. The
question is then how to choose the high dimensional matrices, such as propagator, innovation
covariance and observation matrices, which define such a model. This is where stochastic par-
tial differential equations (SPDE) come into play. Gaussian processes can be defined through
SPDEs. The advection-diffusion SPDE is an elementary model in the spatio-temporal setting.
When solving this SPDE in the spectral space, and discretizing in time and space, a linear
Gaussian state space model is obtained, see Sigrist, Künsch, and Stahel (2015). The resulting
linear state space model has realistic and interpretable choices for parametrizing its matrices
and it is computationally tractable. Roughly speaking, the computational speed-up is due
to the temporal Markov property and the fact that Fourier functions are eigenfunctions of
the differential operator, from which follows that in the spectral space most of the relevant
matrices are diagonal. The goals of this package is that a user can apply this model with-
out worrying about details such as book keeping of Fourier coefficients. In statistics, using
SPDEs for spatial or spatio-temporal modeling was first done by Whittle (1954); Heine (1955);
Whittle (1962). Later works include Jones and Zhang (1997); Brown, Karesen, Roberts, and
Tonellato (2000); Lindgren, Rue, and Lindstrom (2011). Similarly, Wikle, Milliff, Nychka,
and Berliner (2001) propose a physics based model based on the shallow-water equations for
modeling tropical ocean surface winds.

Several other packages exist that allow for analyzing and modeling of space-time data. The
package SpatioTemporal (Lindstrom, Szpiro, Sampson, Bergen, and Oron 2013) provides
utilities that estimate, predict and cross-validate the spatio-temporal model developed for
the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Spatio-temporal
variability is modeled using spatially varying temporal basis functions. The package gstat
(Pebesma 2004) allows for multivariate geostatistical modelling, prediction and simulation. It
supports spatio-temporal variogram modelling and kriging. Both of the above packages rely
on the covariance function which makes their application for large data unfeasible. spacetime
(Pebesma 2012) is a package for storing, handling, and exploring different types of spatio-
temporal data. Statistical modeling of spatio-temporal processes is not supported, though.
RandomFields (Schlather, Malinowski, Menck, Oesting, and Strokorb 2015) provides func-
tions for simulation and estimation of spatial and spatio-temporal random fields. Estimation
of the hyper-parameters of Gaussian random fields can be done using maximum likelihood or
least squares based on the variogram. spTimer (Bakar and Sahu 2015) allows for modeling
of large data using separable spatio-temporal models. spBayes (Finley, Banerjee, and Carlin
2007; Finley, Banerjee, and Gelfand 2015) provides functions for modeling spatio-temporal
data with Markov chain Monte Carlo (MCMC). Predictive process models (Finley, Banerjee,
and Gelfand 2012) can be used for dealing with large data sets. Furthermore, the package
fields (Nychka, Furrer, and Sain 2014) contains various tools for spatial statistics.

The package spate (Sigrist, Künsch, and Stahel 2013) has the following functionality. On
the one hand, it provides tools for constructing customized models such as generalized linear
mixed models (GLMM) or hierarchical Bayesian models (HBM, Wikle, Berliner, and Cressie
1998) using the SPDE based spatio-temporal Gaussian process at some stage, for instance,
in the linear predictor. These tools include functions for obtaining spectral propagator and
covariance matrices of the linear Gaussian state space model, fast calculation of the two-
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dimensional real Fourier transform, reduced dimensional approximations, fast evaluation of
the log-likelihood, and fast simulation from the full conditional of the Fourier coefficients
using a spectral variant of the forward filtering backward sampling (FFBS) algorithm (Carter
and Kohn 1994; Frühwirth-Schnatter 1994). On the other hand, the package also provides a
function for doing Bayesian inference using an MCMC algorithm that is designed such that it
needs as little fine tuning as possible. The MCMC algorithm can model data being normally
distributed or censored data with point mass at zero following a skewed Tobit distribution.
There is also a function for making probabilistic predictions. A user interested in modeling
data not following one of the above two types of data distributions can modify the MCMC
algorithm to allow for different distributions. In addition, functions for plotting and simulation
of space-time processes are also provided.

1.1. Notation and model overview

In the following, we briefly introduce the notation used in this paper and present the SPDE
based spatio-temporal model. For more details, we refer to the following sections. We assume
that we observe a Gaussian process w(ti, sl), i = 1, . . . , T , l = 1, . . . , N , on a regular, rect-
angular grid of n × n = N spatial locations s1, . . . , sN in [0, 1]2, n even, and at equidistant
time points t1, . . . , tT with ti − ti−1 = ∆. These two assumptions can be easily relaxed, i.e.,
one can have irregular spatial locations and non-equidistant time points. The former can
be achieved by adopting a data augmentation approach (implemented in spate.mcmc) or by
using an incidence matrix (also implemented in spate.mcmc, see below) depending on the
dimensionality of the observation process. The latter can be done by taking a time varying
∆i. We assume that the observed process w(ti, sl) equals a parametric regression term plus
an SPDE based Gaussian process ξ(ti, sl), modeling structured spatio-temporal variation,
plus an unstructured term ν(ti, sl) accounting for measurement errors and / or small scale
variation.

In vectorized form, we write w(ti) = (w(ti, s1), . . . , w(ti, sN ))> (where stacking is done first
over the x-axis and then over the y-axis). ξ(ti) and ν(ti) are defined analogously. The model
we propose is then the following linear Gaussian state space model

w(ti+1) =
P∑
p=1

βp · xp(ti+1) + ξ(ti+1) + ν(ti+1), ν(ti+1) ∼ N(0, τ21), (1)

ξ(ti+1) = Φα(ti+1), (2)

α(ti+1) = Gα(ti) + ε̂(ti+1), ε̂(ti+1) ∼ N(0, Q̂), (3)

where xp(ti+1) = (xp(ti+1, s1), . . . , xp(ti+1, sN ))>, p = 1, . . . , P , are spatio-temporal covari-
ates with coefficients β = (β1, . . . , βP )> ∈ RP . For each ti, the spatio-temporal process
ξ(ti) = Φα(ti) is the Fourier transform of Fourier coefficients α(ti) which evolve dynamically
over time. The parametrizations of the propagator and innovation covariance matrices G and
Q̂ are defined through the spectral solution of the SPDE, see Section 2.3 for details.

If the observations are censored, to be more specific, if they follow a skewed Tobit distribution,
the observed data is denoted by y(ti, sl). Finally, θ = (ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2)> denotes

the vector of all hyper-parameters used for parametrizing the spatio-temporal model.
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2. Summary of methodological background

In the following, we briefly present the underlying model and methodology. For more details
we refer to Sigrist et al. (2015). We start with a continuous space-time model that is defined
through an SPDE. This is then solved in the spectral space and discretized in both space and
time to obtain a vector autoregression, see Equations 2 and 3.

2.1. Space-time Gaussian process defined through an SPDE

A spatio-temporal Gaussian process ξ(t, s) is defined as the solution of the stochastic advection-
diffusion equation

∂

∂t
ξ(t, s) = −µ>∇ξ(t, s) +∇ ·Σ∇ξ(t, s)− ζξ(t, s) + ε(t, s), (4)

where t ≥ 0, s ∈ [0, 1]2 wrapped on a torus, ∇ =
(
∂
∂x ,

∂
∂y

)>
is the gradient operator, and

∇ · F = ∂Fx

∂x + ∂F y

∂y is the divergence operator for F = (F x, F y)> being a vector field,

µ = (µx, µy)
>,

Σ−1 =
1

ρ2
1

(
cosα sinα
−γ · sinα γ · cosα

)T (
cosα sinα
−γ · sinα γ · cosα

)
,

and where ε(t, s) is a Gaussian random field that is white in time and has a spatial Matérn
covariance function with spectral density

f̂(k) =
σ2

(2π)2

(
k>k +

1

ρ2
0

)−(v+1)

.

For the parameters, we have the following restrictions

ρ0, σ, ρ1, γ, ζ, v ≥ 0, µx, µy ∈ [−0.5, 0.5], α ∈ [0, π/2].

2.2. Interpretation

Conceptually, the SPDE can just be seen as a tool for defining a space-time Gaussian process.
The covariance function of this process is implicitly defined through the SPDE and the choice
of parameters of the SPDE. The covariance function cannot be given in closed form, its Fourier
transform can, though. Similarly as, e.g., a range parameter of an exponential covariance
function in spatial statistics, the parameters of this Gaussian process can be interpreted.

Heuristically, the SPDE specifies what happens locally at each point in space during a small
time step. The first term µ · ∇ξ(t, s) models transport effects (called advection in weather
applications), µ being a drift or velocity vector. The second term, ∇·Σ∇ξ(t, s), is a diffusion
term that can incorporate anisotropy. ρ1 acts as a range parameter and controls the amount
of diffusion. The parameters γ and α control the amount and the direction of anisotropy.
With γ = 1, isotropic diffusion is obtained. Removing a certain amount of ξ(t, s) at each
time, −ζξ(t, s) accounts for damping and regulates the amount of temporal correlation. Fi-
nally, ε(t, s) is a source-sink or stochastic forcing term that can be interpreted as describing,
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amongst others, convective phenomena in precipitation modeling applications. ρ0 is a range
parameter and σ2 determines the marginal variance. Since in many applications the smooth-
ness parameter v is not estimable from data, we take v = 1 by default, which corresponds to
the Whittle covariance function.

If the terms µ·∇ξ(t, s) and∇·Σ∇ξ(t, s) equal zero, the model reduces to a separable Gaussian
process with a covariance function that is just the product of a temporal and a spatial one.
Its discretized version is then a vector autoregression with a scalar propagator matrix. In
many applications, however, separability is an assumptions that is too simple to be realistic.

2.3. Spectral solution

As is shown in Sigrist et al. (2015), inference can be done computationally efficiently when
solving the SPDE in the spectral space. The latter means, roughly speaking, that the solution
is represented as a linear combination of deterministic, real Fourier basis functions

φ
(c)
j (s) = cos(k>j s), φ

(s)
j (s) = sin(k>j s),

with random coefficients αcj(t), α
s
j(t) that evolve dynamically over time according to a vector

autoregression. See Cressie and Wikle (2011, Chapter 7) for an overview of basis function
expansions in spatio-temporal statistics. Fourier functions have several advantages for solving
the SPDE (4). Amongst others, Fourier functions are eigenfunctions of the spatial differential
operator: differentiation in the physical space corresponds to multiplication in the spectral
space. Furthermore, one can use the fast Fourier transform (FFT) (Cooley and Tukey 1965)
for efficiently transforming from the physical to the spectral space, and vice versa.

While the solution of the SPDE is a continuous space-time model, in practice, one typically
needs to discretize it in space and time. Solving the SPDE in the spectral space and discretiz-
ing it, we obtain the vector autoregression given in Equations 2 and 3. In Equation 2, the
matrix Φ is given by

Φ =
[
φ(s1), . . . ,φ(sN )

]>
,

φ(sl) =
(
φ

(c)
1 (sl), . . . , φ

(c)
4 (sl), φ

(c)
5 (sl), φ

(s)
5 (sl), . . . , φ

(c)
K/2+2(sl), φ

(s)
K/2+2(sl)

)>
.

This matrix applies the discrete, real Fourier transformation to the coefficients

α(t) =
(
α

(c)
1 (t), . . . , α

(c)
4 (t), α

(c)
5 (t), α

(s)
5 (t), . . . , α

(c)
K/2+2(t), α

(s)
K/2+2(t)

)>
.

Note that the first four terms are cosine terms and, afterwards, there are cosine - sine pairs.
This is a peculiarity of the real Fourier transform. It is due to the fact that for four wavenum-
bers kj , the sine terms equal zero on the grid. We use the real Fourier transform, instead
of the complex one, in order to avoid complex numbers in the propagator matrix G and
since data is usually real. Note that due to the use of Fourier functions, we assume spatial
stationarity for both the solution ξ and the innovation term ε.

Equation 3 specifies how the random Fourier coefficients evolve dynamically over time. The
propagator matrix G is a block diagonal matrix with 2× 2 blocks, and the innovation covari-
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ance matrix Q̂ is a diagonal matrix. These two matrices are defined as follows:

G = e∆H ,

[H]1:4,1:4 = diag
(
−k>j Σkj − ζ

)
,

[H]5:K,5:K = diag

(
−k>j Σkj − ζ −µkj

µkj −k>j Σkj − ζ

)
,

(5)

and

Q̂ = diag

(
f̂(kj)

1− e−2∆(k>
j Σkj+ζ)

2(k>j Σkj + ζ)

)
. (6)

The above result is given in vector format. For the sake of understanding, we can also write
the solution as follows.

ξ(t, sl) =
4∑
j=1

α
(c)
j (t)φ

(c)
j (sl) +

K/2+2∑
j=5

α
(c)
j (t)φ

(c)
j (sl) + α

(s)
j (t)φ

(s)
j (sl)

=φ(sl)
>α(t),

(7)

where K denotes the number of Fourier terms, i.e., K = N . K however does not necessary
need to equal N , see below for a discussion on dimension reduction.

The spatial wavenumbers kj used in the real Fourier transform lie on the n × n grid Dn =
{2π · (i, j) : −(n/2 + 1) ≤ i, j ≤ n/2} ⊂ 2π · Z2 with n2 = N and n even.

2.4. Non-Gaussian data, missing data, and non-grid data

Non-Gaussian data can be modeled, for instance, in the framework of generalized linear mixed
models (GLMM) or hierarchical Bayesian models (HBM). This means that one assumes that
the data follow a non-Gaussian distribution F conditionally on w(ti, sl) or conditionally on
the linear predictor

∑P
p=1 βp · xp(ti, sl) + ξ(ti+1, sl). HBMs can be fitted similarly as outlined

in Rue and Held (2005, Chapter 4) for Gaussian Markov random fields (GMRF). Analogously
as in the case of GMRFs, fast simulation and evaluation of the likelihood of the Gaussian
field is crucial when modeling non Gaussian data using an HBM. Note, however, that fitting
such models can be a non-trivial task and is subject to ongoing research.

Another approach, which avoids adding an additional stochastic level, is to assume that the
data is a transformed version of w(ti, sl). For instance, if the observations follow a skewed
Tobit model, then the we have the following observation relation

y(ti, sl) = max(0, w(ti, sl))
λ, (8)

where now y(ti, sl) denotes the observed values and w(ti, sl) is a latent Gaussian field. This
data model is implemented in the package spate. Such a model is often used for modeling
precipitation.

Furthermore, missing values, and the censored ones in (8), can be easily dealt with using
a data augmentation approach. Roughly speaking, one adds an additional Gibbs step for
simulating the missing values. See, e.g., Sigrist, Künsch, and Stahel (2012) for more details.

If the observations do not lie on a regular spatial grid, one can either include an incidence
matrix I that relates the process on the grid to the observation locations (see Equation 9
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below) or, depending on the number of observations, one can assign the data to a regular grid
and treat the cells with no observations as missing data.

2.5. Computationally efficient inference

When doing inference, for both data models, the Gaussian one in (1) and the transformed
Tobit model (8), the main difficulty consists in evaluating the likelihood `(θ) = P [θ|w], θ =
(ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2)>, and in simulating from the full conditional of the coefficients

[α|w,θ], where w = (w(t1)>, . . . ,w(tT )>)> and α = (α(t1)>, . . . ,α(tT )>)> denote the full
space-time fields. As shown in Sigrist et al. (2015), this can be done in O(TN) time in the
spectral space using the Kalman filter and a backward sampling step. The FFT can be used to
transform between the physical and the spectral space. Since there are T fields of dimension
N (= n2), the costs for this are O(TN logN). These T Fourier transforms can be run in
parallel, though.

2.6. Dimension reduction

The total computational costs can be additionally alleviated by using a reduced dimensional
Fourier basis with K << N basis functions. This means that one includes only certain
frequencies, e.g., low ones. The spectral filtering and sampling algorithms then require O(KT )
operations. For using the FFT, the frequencies being excluded are just set to zero.

Alternatively, when the observation process is irregular and low-dimensional in space, one can
include an incidence matrix I that relates the process on the grid to the observation locations.
Instead of (1), the observation equation, without a regression term, is then

w(ti+1) = IΦα(ti+1) + ν(ti+1), ν(ti+1) ∼ N(0, τ21K). (9)

The FFT cannot be used anymore, and the total computational costs are O(K3T ) due to the
traditional FFBS.

3. Parametrization of the dynamic space-time model

3.1. Innovation spectrum and Matérn spectrum

The function innov.spec returns the spectrum of the integrated stochastic innovation field
Φε̂(ti+1). I.e., the function returns the diagonal entries of the covariance matrix Q̂ of ε̂(ti+1)
as specified in (6). Similarly, the function matern.spec returns the spectrum of the Matérn
covariance function. Note that the Matérn spectrum is renormalized, by dividing with the
sum over all frequencies so that they sum to one. This guarantees that the parameter σ2

is the marginal variance no matter how many wavenumbers are included, in case dimension
reduction is done and some frequencies are set to zero.

The code below illustrates how these functions are used. First a vector of independent Gaus-
sian random variables with variances according to the desired spectrum is simulated. For
instance, ε̂ ∼ N(0, Q̂). In the example, this is done for the Whittle and the integrated in-
novation spectrum specified in (6). Then its Fourier transform Φε̂ is calculated to obtain a
sample from the spatial field with corresponding spectrum. See two sections below for more
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Figure 1: Samples from Gaussian processes with Whittle covariance function and the covari-
ance function of the integrated stochastic innovation field Φε̂(ti+1).

details on how to calculate the Fourier transform. Figure 1 shows sample fields from the
Whittle process and from the stochastic innovation process. The color scale is generated us-
ing a palette from the package colorspace (Ihaka, Murrell, Hornik, Fisher, and Zeileis 2013).
See also Zeileis, Hornik, and Murrell (2009).

R> n <- 100

R> set.seed(1)

R> wave <- spate.init(n = n, T = 1)[["wave"]]

R> matern.spec <- matern.spec(wave = wave, n = n, rho0 = 0.05, sigma2 = 1,

+ norm = TRUE)

R> matern.sim <- real.fft(sqrt(matern.spec) * rnorm(n * n), n = n,

+ inv = FALSE)

R> innov.spec <- innov.spec(wave = wave, n = n, rho0 = 0.05, sigma2 = 1,

+ zeta = 0.5, rho1 = 0.05, alpha = pi/4, gamma = 2, norm = TRUE)

R> innov.sim <- real.fft(sqrt(innov.spec) * rnorm(n * n), n = n,

+ inv = FALSE)

3.2. Propagator matrix

The function get.propagator returns the spectral propagator matrix G as defined in (5).
The following code illustrates how get.propagator is used.

R> n <- 4

R> wave <- wave.numbers(n)

R> G <- get.propagator(wave = wave[["wave"]], indCos = wave[["indCos"]],

+ zeta = 0.5, rho1 = 0.1, gamma = 2, alpha = pi/4, muX = 0.2,

+ muY = -0.15)
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Figure 2: Illustration of spectral propagation: initial and propagated field.

Alternatively, the function propagate.spectral propagates a state α(t) to obtain Gα(t) in
a computationally efficient way using the block-diagonal structure of G. Note that this is
a wrapper function of a C function. In general, it is preferable to use propagate.spectral

instead of calculating a matrix multiplication with G. The function propagate.spectral

has as argument the propagator matrix G in vectorized from as obtained from the function
get.propagator.vec. Figure 2 and the corresponding code illustrates the use of these two
functions. First, we define an initial state α(t), which is a sample from the process with
the Whittle covariance function in this example. Then α(t) is propagated forward to obtain
Gα(t). The code shows that actually calculating Gα(t) and applying propagate.spectral

are equivalent (see last line of code).

R> n <- 50

R> wave <- wave.numbers(n)

R> spec <- matern.spec(wave = wave[["wave"]], n = n, rho0 = 0.05,

+ sigma2 = 1, norm = TRUE)

R> alphat <- sqrt(spec) * rnorm(n * n)

R> G <- get.propagator(wave = wave[["wave"]], indCos = wave[["indCos"]],

+ zeta = 0.1, rho1 = 0.02, gamma = 2, alpha = pi/4, muX = 0.2,

+ muY = 0.2, dt = 1, ns = 4)

R> alphat1a <- as.vector(G %*% alphat)

R> Gvec <- get.propagator.vec(wave = wave[["wave"]],

+ indCos = wave[["indCos"]], zeta = 0.1, rho1 = 0.02, gamma = 2,

+ alpha = pi/4, muX = 0.2, muY = 0.2, dt = 1, ns = 4)

R> alphat1b <- propagate.spectral(alphat, n = n, Gvec = Gvec)

R> sum(abs(alphat1a - alphat1b))

[1] 0
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3.3. Two-dimensional real Fourier transform

The function real.fft calculates the fast two-dimensional real Fourier transform. This is
a wrapper function of a C function which uses the complex FFT function from the fftw3

library. Furthermore, the function real.fft.TS calculates the two-dimensional real Fourier
transform of a space-time field for all time points at once. To be more specific, for each time
point, the corresponding spatial field is transformed. In contrast to using T times the function
real.FFT, R needs to communicate with C only once which saves considerable computational
time, depending on the data size. For an example of the use of real.fft, see two sections
above.

The function wave.number returns the wavenumbers used in the real Fourier transform. In
contrast to the complex Fourier transform, which uses n2 different wavenumbers kj on a
square grid, the real Fourier transform uses n2/2 + 2 different wavenumbers. As mentioned
earlier, four of them have only a cosine term, and the remaining n2/2− 2 wavenumbers each
have a sine and cosine term. For technical details on the real Fourier transform, we refer
to Dudgeon and Mersereau (1984), Borgman, Taheri, and Hagan (1984), Royle and Wikle
(2005), and Paciorek (2007).

The function get.real.dft.mat returns the matrix Φ (see (2)) which applies the two-
dimensional real Fourier transform. Note that, in general, it is a lot faster to use real.fft

rather than actually multiplying with Φ. The following code shows how Φ can be constructed
using get.real.dft.mat.

R> n <- 20

R> wave <- wave.numbers(n = n)

R> Phi <- get.real.dft.mat(wave = wave[["wave"]], indCos = wave[["indCos"]],

+ n = n)

4. Simulation and plotting

The function spate.sim allows for simulating from the SPDE based spatio-temporal Gaus-
sian process model defined through (2) and (3). The function returns a "spateSim" object
containing the sample ξ, the coefficients α, as well as the observed w obtained by adding
a nugget effect to ξ. The argument par is a vector of parameters θ in the following order
θ = (ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2)>. An initial state, or starting value, ξ(t1) for the dynamic

model can be given through the argument StartVal. The starting field needs to be a stacked
vector of lengths n2 (number of spatial points). Use as.vector() to convert a spatial ma-
trix to a vector. "spateSim" objects can be plotted with the function plot.spateSim. The
following code illustrates the use of these functions, with the plot shown in Figure 3:

R> StartVal <- rep(0, 100^2)

R> StartVal[75 * 100 + 75] <- 1000

R> par <- c(rho0 = 0.05, sigma2 = 0.7^2, zeta = -log(0.99), rho1 = 0.06,

+ gamma = 3, alpha = pi/4, muX = -0.1, muY = -0.1, tau2 = 0.00001)

R> spateSim <- spate.sim(par = par, n = 100, T = 5, StartVal = StartVal,

+ seed = 1)

R> plot(spateSim, mfrow = c(1, 5), mar = c(2, 2, 2, 2), indScale = TRUE,

+ cex.axis = 1.5, cex.main = 2)
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Figure 3: Simulated spatio-temporal Gaussian process as defined in (2) and (3).

Note that indScale = TRUE specifies that each field has its individual scale on the z-axis
rather than having one common scale for all six images. Figure 3 shows one example of a
simulated space-time process. The deterministic initial state in the left plot gets propagated
over time and at each time step a spatially structured innovation noise is added, see Equa-
tions 2 and 3. The drift points from north-east to south-west and there is anisotropy in the
same direction.

5. Log-likelihood and sampling from the full conditional

The function ffbs.spectral implements the computationally efficient Kalman filter and
backward sampling algorithms in the spectral space for the model specified in (1), (2), and (3).
The logical arguments lglk or BwSp control whether evaluation of the log-likelihood, sampling
from the full conditional of the coefficients α, or both are done. This is a wrapper function and
the actual calculation is done in C. Note that either the actual observed data w can be given
or the Fourier transform ŵ (wFT). The latter is useful if, for instance, the log-likelihood needs
to be evaluated several times given the same w. The Fourier transform is then calculated
only once, instead of each time the function is called. loglike and sample.four.coef are
wrapper functions that call ffbs.spectral.

5.1. Example of use of sample.four.coef

The following code illustrates the use of the function sample.four.coef. First, we simulate
data w, and then we sample from the full conditional of the coefficients [α|·] to obtain samples
from the posterior of the latent process. For simplicity, the parameters θ are fixed at their
true values. In Figure 4, the results are shown. In the top plot, the simulated data is displayed
and in the bottom plots the mean of full conditional of the process ξ = Φα. The latter is
obtained by drawing 50 samples from the full conditional [α|·], calculating their mean, and
applying the Fourier transform.

R> n <- 50

R> T <- 4

R> par <- c(rho0 = 0.1, sigma2 = 0.2, zeta = 0.5, rho1 = 0.1, gamma = 2,

+ alpha = pi/4, muX = 0.2, muY = -0.2, tau2 = 0.01)

R> spateSim <- spate.sim(par = par, n = n, T = T, seed = 4)

R> w <- spateSim$w

R> Nmc <- 50
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w(1) w(2) w(3) w(4)

xiPost(1) xiPost(2) xiPost(3) xiPost(4)

Figure 4: Sampling from the full conditional of the coefficients: comparison of observed data
(top plots) and mean of full conditional of ξ (bottom plots).

R> alphaS <- array(0, c(T, n * n, Nmc))

R> wFT <- real.fft.TS(w, n = n, T = T)

R> for(i in 1:Nmc) { alphaS[, , i] <- sample.four.coef(wFT = wFT,

+ par = par, n = n, T = T, NF = n * n) }

R> alphaMean <- apply(alphaS, c(1, 2), mean)

R> xiMean <- real.fft.TS(alphaMean, n = n, T = T, inv = FALSE)

5.2. Example of use of loglike

The following code provides an example of the use of loglike. We use the same simulated
data as in the previous example and evaluate the log-likelihood at the true parameter values.
The code also demonstrates that the function loglike does the same thing whether one
uses the original data w or their Fourier transform ŵ =wFT. For an example on how to do
maximum likelihood estimation, see the next section.

R> loglike(par = par, w = w, n = n, T = T)

[1] 7861.001

R> loglike(par = par, wFT = wFT, n = n, T = T)

[1] 7861.001

5.3. Maximum likelihood estimation

With the function loglike, one can do maximum likelihood estimation. The following code
shows an example of how this can be done using a general purpose optimizer, e.g., implemented
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in the R function optim. First, simulated data is generated. Then optim is used to minimize
the negative log-likelihood. In the code when calling loglike, we set negative = TRUE as an
argument for loglike so that it returns the negative log-likelihood. Further, with logScale

= TRUE we specify that certain parameters are on the logarithmic scale to ensure positivity
constraints. logInd is a vector of natural numbers indicating which parameters in par are on
the logarithmic scale. Additional constraints, e.g., on the angle of the diffusion anisotropy α
or on the drift terms µx and µy are set by using the L-BFGS-B algorithm called by setting
method = "L-BFGS-B" in the optim function. The results show the estimated parameters,
transformed back to the original scale, as well as 95% confidence intervals. Evaluating the
likelihood for this 8000 dimensional Gaussian process (20×20×20) takes about 0.008 seconds
on a desktop PC (AMD Athlon 64 X2 dual core processor 5600+). This is achieved without
applying any dimension reduction. The entire inference takes less than 12 seconds.

R> n <- 20

R> T <- 20

R> par <- c(rho0 = 0.1, sigma2 = 0.2, zeta = 0.5, rho1 = 0.1,

+ gamma = 2, alpha = pi/4, muX = 0.2, muY = -0.2, tau2 = 0.01)

R> spateSim <- spate.sim(par = par, n = n, T = T, seed = 4)

R> w <- spateSim$w

R> parI <- c(rho0 = 0.2, sigma2 = 0.1, zeta = 0.25, rho1 = 0.01,

+ gamma = 1, alpha = 0.3, muX = 0, muY = 0, tau2 = 0.005)

R> logInd <- c(1, 2, 3, 4, 5, 9)

R> parI[logInd] <- log(parI[logInd])

R> wFT <- real.fft.TS(w, n = n, T = T)

R> spateMLE <- optim(par = parI, loglike, method = "L-BFGS-B",

+ control = list(trace = TRUE, maxit = 1000), wFT = wFT, negative = TRUE,

+ logScale = TRUE, logInd = c(1, 2, 3, 4, 5, 9), hessian = TRUE, n = n,

+ T = T, lower = c(-10, -10, -10, -10, -10, 0, -0.5, -0.5, -10),

+ upper = c(10, 10, 10, 10, 10, pi/2, 0.5, 0.5, 10))

iter 0 value -4612.774109

iter 10 value -4968.050499

iter 20 value -5011.362034

iter 30 value -5045.032630

iter 40 value -5045.150319

final value -5045.150588

converged

R> mle <- spateMLE$par

R> mle[logInd] <- exp(mle[logInd])

R> sd <- sqrt(diag(solve(spateMLE$hessian)))

R> MleConfInt <- data.frame(array(0, c(4, 9)))

R> colnames(MleConfInt) <- names(par)

R> rownames(MleConfInt) <- c("True", "Estimate", "Lower", "Upper")

R> MleConfInt[1,] <- par

R> MleConfInt[2,] <- mle

R> MleConfInt[3,] <- spateMLE$par - 2 * sd
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R> MleConfInt[4,] <- spateMLE$par + 2 * sd

R> MleConfInt[c(3, 4), logInd] <- exp(MleConfInt[c(3, 4), logInd])

R> round(MleConfInt, digits = 3)

rho0 sigma2 zeta rho1 gamma alpha muX muY tau2

True 0.10 0.20 0.50 0.10 2.00 0.79 0.20 -0.20 0.01

Est. 0.09 0.17 0.36 0.11 2.21 0.85 0.21 -0.18 0.01

Lower 0.08 0.14 0.18 0.09 1.85 0.75 0.18 -0.21 0.01

Uppe 0.11 0.20 0.71 0.13 2.64 0.94 0.25 -0.14 0.01

5.4. Bayesian inference using MCMC

Using sample.four.coef and loglike an MCMC algorithm for drawing from the joint poste-
rior of the latent process α, or equivalently ξ, and the hyper-parameters θ can be constructed.

One approach is to sample iteratively from [θ|·] using a Metropolis-Hastings step and from
[α|·] with a Gibbs step. In many situations, α and θ can be strongly dependent a posteriory.
Consequently, if one samples successively from [θ|·] and [α|·], one can run into slow mixing
properties. The reason is that in each step [θ|·] is constrained by the last sample of the latent
process, and vice versa. To circumvent this problem, one can sample jointly from [θ,α|·]. A
joint proposal (θ∗,α∗) is obtained by sampling θ∗ from a Gaussian distribution with the mean
equaling the last value and an appropriately chosen covariance matrix and then sampling α∗

from [α|θ∗, ·]. The second step can be done using sample.four.coef. It can be shown that
the acceptance probability then equals

min

(
1,
P [θ∗|w]

P [θ(i)|w]

)
, (10)

where the likelihood P [θ|w] denotes the value of the density of θ given w evaluated at θ,
and where θ∗ and θ(i) denote the proposal and the last value of θ, respectively. Since this
acceptance ratio does not depend on α, the parameters θ can move faster in their parameter
space. Note that P [θ|w] can be calculated using the function loglike.

Skewed Tobit model and missing data

For the transformed Tobit model (8), inference is done analogously. One just adds a Metropolis-
Hastings step for the transformation parameter λ and a Gibbs step for the censored values
y(t, sl) = 0. The latter consists in simulating from a censored normal distribution with mean
ξ(i)(t, sl) and variance τ2. See Sigrist et al. (2012) for more details.

As said, missing values can be dealt with by using a data augmentation approach. This means
that one adds a Gibbs step consisting in simulating from a normal distribution with mean
ξ(i)(t, sl) and variance (τ2)(i) for those points where w(t, sl), or y(t, sl), are missing.

6. An MCMC algorithm

It is well known that the performance of MCMC algorithms can be very dependent on the
data, and that application specific tuning is often needed. Having this in mind, the function
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spate.mcmc implements an MCMC algorithm that needs as little additional fine tuning as
possible. It can deal with both Gaussian and skewed Tobit likelihoods through the argument
DataModel. Sampling is done as outlined in the previous section. I.e., the coefficients α and
the hyper-parameters θ are sampled together to obtain faster mixing. Further, an adaptive
algorithm (Roberts and Rosenthal 2009) is used. This means that the proposal covariances
RWCov for the Metropolis-Hastings step of θ are successively estimated such that an optimal
acceptance rate is obtained.

The function spate.mcmc returns an object of the class "spateMCMC" with, among others,
samples from the posterior of the hyper-parameters stored in the matrix Post, the estimated
proposal covariance matrix RWCov, and samples from the posterior of the latent process ξ
in xiPost if saveProcess = TRUE was chosen. There are plot and print functions for
"spateMCMC" objects.

6.1. Arguments of spate.mcmc

� The observed data is specified in the N × T matrix y with columns and rows corre-
sponding to time and space (observations on a grid stacked into a vector).

� Observations in y can either be on a square grid or not. By default, at each time point,
the observations are assumed to lie on a square grid with each axis scaled so that it has
unit length. If not, the coordinates of each observation point can be specified in the
T×N matrix coord, where N(< n2) is the number of observation stations. According to
these coordinates, each observation location is then mapped to a grid cell. Alternatively
to the use of coord, one can directly specify in the vector Sind the indices of the grid
cells where observations are made. Sind needs to be of length N .

� In case y is not a full space time field on a rectangular grid, n specifies the number of
points per axis of the square into which the observation points are mapped. In total,
the process is modeled on a grid of size n × n. n needs to be an even number. If the
process is observed on a rectangular grid, we have by default n×n = N . Otherwise, the
dimension of the observed process N can be smaller than the dimension of the latent
process n× n.

� Spatio-temporal covariates can be specified in x. This is an array of dimensions p×T×N ,
where p denotes the number of covariates, T the number of time points, and N the
number of spatial points.

� If covariates x are given, the algorithm can either sample the coefficients β in an addi-
tional Gibbs step from the Gaussian full conditional of the coefficients [β|·]
(FixEffMetrop = FALSE) or sample β together with θ in the Metropolis-Hastings step
(FixEffMetrop = TRUE). The latter is preferable since the random effects ξ and the
fixed effects xβ can be strongly dependent, which can result in very slow mixing if β
and ξ are sampled iteratively and not jointly.

� Starting values for parameters are specified in the vector SV. The parameters are in the
following order: ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2.

� Starting values for the regression coefficients can be given in the vector betaSV.
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� The number of samples to be drawn from the Markov chain is specified in Nmc and the
length of the burn-in in BurnIn.

� The covariance matrix of the proposal distribution used in the random walk Metropolis-
Hastings step for the hyper-parameters can be specified in RWCov. If adaptive = TRUE

is selected, this matrix is adaptively estimated and RWCov is only used in the initial
stage. If adaptive = TRUE, NCovEst specifies the minimal number of samples to be
used for estimating the proposal matrix and BurnInCovEst the length of the burn-in
period after which the proposal matrix is estimated.

� Priors for the hyper-parameters can be specified in the functions P.rho0, P.sigma2,
P.zeta, P.rho1, P.gamma, P.alpha, P.mux, P.muy, and P.tau2. By default, the package
implements reasonable prior distributions for these parameters.

� DataModel specifies the data model. "Normal" or "SkewTobit" are available options.

� If the option trace = TRUE is selected, the MCMC algorithm prints running status
messages such as acceptance rates of the hyper-parameters and estimated remaining
computing time. Additionally, if choosing plotTrace = TRUE, running trace plots of
the Markov chains are generated. Further, using SaveToFile = TRUE, the "spateMCMC"
object can be successively saved in a directory specified through path and file.

� Dimension reduction can be applied by setting DimRed = TRUE and by specifying in
NFour the number of Fourier functions to be used.

� If the Boolean argument IncidenceMat equals TRUE, an incidence matrix I is con-
structed and the model in (9) is used. In that case, dimension reduction needs to be
done since one cannot use the fast spectral algorithms in combination with the FFT
anymore.

� Padding can be applied by choosing Padding = TRUE.

� The vector of integers indEst specifies which parameters should be estimated and which
not. By default this equals c(1, ..., 9). If, for instance, one wants to fit a separable
model, one can choose indEst = c(1, 2, 3, 9) in combination with SV = c(0.2,

0.1, 0.25, 0, 0, 0, 0, 0, 0.001). The latter sets the initial values of the diffusion
and drift term to zero. Since they are not sampled, they remain at zero.

spate.mcmc has additional functionality, see the help file of spate.mcmc for more details.

6.2. Additional fine tuning

In case the MCMC algorithm still needs some fine tuning, the following arguments can be
varied:

� The initial covariance matrix RWCov.

� The burn-in length BurnInCovEst before starting with the adaptive estimation of RWCov.

� The minimal number of MCMC samples NCovEst required after the burn-in for esti-
mating RWCov.
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Due to the adaptive nature of the algorithm, the initial choice of RWCov is less important.
However, if RWCov is overly large, the algorithm can have very small acceptance rates with
the chain barely moving at all. On the other hand, if RWCov overly small, acceptance rates
might be high, but the chain does not cover the parameter space.

If choosing adequate an RWCov turns out difficult, we propose the following strategy. For each
hyper-parameter θi in θ, one searches for an appropriate variance σ2

i when fixing all other
parameters. This can be done by specifying through the argument indEst which parameters
should be estimated and which not. For instance, if indEst = 1, only for the first parameter
ρ0 a Markov chain is run, and the others are fixed. Using this, an appropriate σ2

i can be found
as follows. For instance, one starts with a very low σ2

i , and then increases it subsequently
until the acceptance rate for θi, when fixing all other parameters, is at a reasonable level,
say, around 0.4. After doing this for each parameter θi, RWCov = diag(σ2

i ) can be used as
initial covariance matrix. Note that the goal is not to find an optimal proposal covariance
matrix but rather just to get a rough idea on the appropriate order of magnitude so that the
algorithm is not “degenerate” from the beginning.

6.3. An example of the use of spate.mcmc

The following code illustrates the use of spate.mcmc on a simulated data set. The MCMC
algorithm is run for 10000 samples with a burn-in of 2000. The burn-in for the adaptive
covariance estimation is 500 and the minimal number of samples required for estimating the
proposal covariance matrix of the Metropolis-Hasting step is also 500. This means that after
1000 samples, the proposal covariance matrix is first estimated. Subsequently, it is estimated
every 500 samples based on the past excluding the first 500 samples from the Markov chain.
Figure 5 shows trace plots of the MCMC algorithm. The vertical lines represent the burn-in
period, and the horizontal lines are the true values of the parameters. Figure 5 shows how the
mixing of the Markov chain improves with increasing time. Note that the number of samples,
10000, is used for illustration. In practice, more samples are needed.

R> par <- c(rho0 = 0.1, sigma2 = 0.2, zeta = 0.5, rho1 = 0.1,

+ gamma = 2, alpha = pi/4, muX = 0.2, muY = -0.2, tau2 = 0.01)

R> spateSim <- spate.sim(par = par, n = 20, T = 20, seed = 4)

R> w <- spateSim$w

R> spateMCMC <- spate.mcmc(y = w, x = NULL, SV = c(rho0 = 0.2,

+ sigma2 = 0.1, zeta = 0.25, rho1 = 0.2, gamma = 1, alpha = 0.3,

+ muX = 0, muY = 0, tau2 = 0.005),

+ RWCov = diag(c(5, 5, 50, 5, 5, 1, 0.2, 0.2, 0.2)/1000),

+ Nmc = 10000, BurnIn = 2000, seed = 4, NCovEst = 500,

+ BurnInCovEst = 500, trace = FALSE, Padding = FALSE)

R> spateMCMC

Posterior of parameters:

Median 2.5 % 97.5 %

rho_0 0.09151798 0.075791669 0.10909257

sigma^2 0.17324097 0.142144435 0.22142933

zeta 0.36457843 0.112205001 0.64655163

rho_1 0.10796025 0.091442696 0.13150375
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Figure 5: Trace plots from the MCMC algorithm. The vertical line shows the burn-in, and
the horizontal lines are the true values of the parameters.

gamma 2.21058762 1.856203179 2.64283184

alpha 0.84013487 0.747082459 0.92371518

mu_x 0.21182190 0.175596745 0.25214613

mu_y -0.17956504 -0.217171052 -0.13986582

tau^2 0.01009896 0.009687484 0.01047601

Results based on 8000 MCMC samples after a

burn-in of 2000 samples

R> plot(spateMCMC, true = par, medianHist = FALSE, ask = FALSE)



Journal of Statistical Software 19

The following code illustrates the use of spate.mcmc when an incidence matrix approach (see
Equation 9) is used in combination with dimension reduction. This is the real data application
used in Sigrist et al. (2015) where, roughly speaking, the goal is to model a spatio-temporal
precipitation field. We are not showing any results here, but we only illustrate how the
function spate.mcmc is called. For more details, we refer to Sigrist et al. (2015). A skewed
Tobit model is used as data model. The observed data is not available on the full 100× 100
grid but only at 32 observation locations. Observations are made at 720 time points. In the
code below, y is a 720×32 matrix, and covTS is a 2×720×32 array containing two covariates.
Sind is a vector of length 32 indicating the grid cells in which the observation stations lie.
DataModel = "SkewTobit" specifies that a skewed Tobit likelihood is used. DimRed = TRUE

and NFour=29 indicate that a reduced dimensional model consisting of 29 Fourier functions is
used. By setting IncidenceMat = TRUE, we specify that an incidence matrix is used. Finally,
FixEffMetrop = TRUE indicates that the coefficients of the covariates are sampled together
with the hyper-parameters of the spatio-temporal model in order to avoid slow mixing due to
correlations between fixed and random effects.

R> spateMCMC <- spate.mcmc(y = y, x = covTS, DataModel = "SkewTobit",

+ Sind = Sind, n = 100, DimRed = TRUE, NFour = 29, IncidenceMat = TRUE,

+ FixEffMetrop = TRUE, Nmc = 105000, BurnIn = 5000, Padding = TRUE,

+ NCovEst = 500, BurnInCovEst = 1000)

6.4. Making predictions with spate.predict

The function spate.predict allows for making probabilistic prediction. It takes a "spateMCMC"
object containing samples from the posterior of the hyper-parameters as argument. The
function then internally calls spate.mcmc where now the Metropolis-Hastings step for the
hyper-parameters is skipped since these are given, and simulation is only done for the latent
coefficients α. In doing so, samples from the predictive distribution are generated. The time
points where predictions are to be made are specified through the argument tPred. Spatial
points are either specified through sPred (grid points) or xPred and yPred (coordinates).
If no spatial points are selected, predictions will be made for the entire fields at the time
points chosen in tPred. In the example, we make predictions at time points t = 21, 22, 23
for the entire spatial fields using Nsim = 100 samples. Figure 6 shows means and standard
deviations of the predicted fields.

R> predict <- spate.predict(y = w, tPred = (21:23), spateMCMC = spateMCMC,

+ Nsim = 100, BurnIn = 10, DataModel = "Normal", seed = 4)

R> mean <- apply(predict, c(1, 2), mean)

R> sd <- apply(predict, c(1, 2), sd)

7. Summary

We have presented tools for modeling high-dimensional space-time processes. This is done
using a spatio-temporal Gaussian process defined through an SPDE. The package is thought
to be used in two different modeling situations. In the first one, the spatio-temporal model is
used as a component in a customized generalized linear mixed model (GLMM) or hierarchical
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Figure 6: Means and standard deviations of predicted fields.

Bayesian model (HBM). In the second one, no additional modeling is done, and one can uses
the adaptive MCMC algorithm implemented in the package. The latter is more convenient
and less flexible, though.
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