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a b s t r a c t 

Exponentially weighted moving average (EWMA) control charts are typically used for faster detection 

of shifts in the process mean, relative to a Shewhart control chart, when the degree of shift is small. 

Normal guidelines suggest using a small (large) value of the weighting constant, λ, for detecting smaller 

(larger) shifts in the process mean. Prior research has suggested that the choice of λ should depend 

on the observed data and have considered the use of a weighting constant, that varies and adapts as 

monitoring continues and new data are collected. One such adaptive control chart, called the AEWMA 

chart, utilizes a rather computationally complex scheme to determine the weighting constant λ and it 

requires knowledge of the size of the shift, to specify whether it is “small” or “large”. A complex two- 

phase optimization scheme is then solved to yield “good solutions”. As an alternative, we propose an 

adaptive EWMA-type control chart that does not require knowledge of the degree of the shift. Further, 

the computational scheme is easier and completed in one stage. The performance of the proposed chart 

is studied using simulations, where the degree of the shift in the process mean is varied over a wide 

range of values. Based on the average run length (ARL), as a performance measure, the proposed chart is 

demonstrated to perform uniformly better than the traditional EWMA chart with a constant weight. 

The proposed chart also performs better than the AEWMA chart for moderate to large shifts. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

The traditional Shewhart control chart technique, introduced in

1924 by Walter Shewhart, has been used in a variety of manufac-

turing and service industries. The commonly used control charts

are those based on the sample mean ( ̄X ), the range ( R ), the stan-

dard deviation ( s ), individual data ( X ) and the moving range ( MR ).

In the first two situations ( ̄X and R , X̄ and s ), it is assumed that in-

dependent and identically distributed observations ( X ) are selected

from a process, in subgroups, where the subgroup size is denoted

by n . In the third situation, the subgroup size is 1 and the process

is monitored based on individual observations ( Mitra, 2016 ). 

The popular Shewhart control charts, while easy to implement,

have the disadvantage that for small shifts in the process param-

eters, for example, the mean, it takes a rather long time to detect

the shift. Consequently, control charts have been developed with
✩ This research did not receive any specific grant from funding agencies in the 

public, commercial, or not-for profit sectors. 
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he purpose of faster detection of small changes in the process pa-

ameters. These include the cumulative sum (CUSUM) chart and

he exponentially-weighted moving average (EWMA) control chart

 Albin, Kang, & Shea, 1997; Chen & Elsayed, 2002; Domangue &

atch, 1991; Klein, 1996; Lucas & Saccucci, 1990; Roberts, 1959 ).

he traditional EWMA control chart is based on the monitoring

tatistic 

 i = λ X i + (1 − λ) Z i −1 (1.1)

here the starting exponentially-weighted smoothed value, Z 0 , is

ften chosen to be the target value of the mean (or the first ob-

erved value) and 0 < λ ≤ 1 is the smoothing constant. Note that

hen λ= 1, the EWMA statistic reduces to the monitoring statis-

ic of a Shewhart chart for individual data. When the monitoring

tatistic is based on the sample means, a similar comment applies.

n alternative form of the EWMA statistic for individual data is

iven by 

 i = λ
i −1 ∑ 

j=0 

(1 − λ) 
j 
X i − j + (1 − λ) i Z 0 (1.2)

hich indicates that while monitoring the data at the current pe-

iod i , the weights assigned to the prior observations ( X i − j ) decline



A. Mitra, K.B. Lee and S. Chakraborti / European Journal of Operational Research 279 (2019) 902–911 903 

e  

s  

s  

n  

l  

t

Z

w  

d  

t  

f  

2  

t  

t  

S  

p  

l  

t  

f  

a  

λ  

t  

d  

o  

a  

s

w  

s  

v  

o  

e  

n

 

E  

t  

E  

c  

c  

S  

s

 

i  

t  

s  

fi  

w  

a  

T  

p  

s  

t  

w  

A  

d  

s  

m  

(  

m  

o  

t  

f  

s  

h  

(  

t  

F  

o  

c  

t  

n

 

c  

c  

c  

a  

a  

p  

H  

t  

c  

A

 

t  

v  

t  

v  

t  

i  

t  

s  

t  

s  

p  

s  

d  

T  

t  

c  

v  

o  

o  

t  

i

 

c  

K  

c  

m  

v  

M  

E  

a  

a  

t  

c  

f  

p  

S  

W  

i  

c  

C  

m  

t  

v  

a  

a  

e  
xponentially, as in a geometric series, the further removed the ob-

ervation is from the current period. When the process mean μ is

pecified or known, say μ0 , the upper and lower control limits, de-

oted by UCL and LCL, respectively, are chosen based on a selected

evel of a false alarm rate (Type I error). Another representation of

he EWMA statistic is given by 

 i = Z i −1 + λe i (1.3) 

here e i = X i – Z i- 1 , is the residual at time i, which represents the

eviation of the observed value at the current time period from

he smoothed or the predicted value at the previous time period (a

orecast for the current period). Prior researchers ( Chen & Elsayed,

0 02; Jones, 20 02; Champ; Lucas & Saccucci, 1990 ) have studied

he properties and performance of the EWMA chart. They noted

hat the EWMA chart overcomes the drawback of the traditional

hewhart chart for small shifts in the process parameter, i.e., the

rocess mean. In particular, for an EWMA chart, the average run

ength (ARL) for the detection of a shift is usually smaller than

hat for a Shewhart chart. These studies have demonstrated that

or “small” shifts in the process mean, a small value of λ is desir-

ble, while for “large” shifts in the process mean, a large value of

is desirable. As the degree of the shift becomes large, the op-

imal value of λ approaches 1, implying that the EWMA chart re-

uces to the Shewhart chart for the individuals data. When the

bservations, X i , are independent and identically distributed from

 N( μ0 , σ
2 
0 

) process, where μ0 and σ 2 
0 

are known or specified, the

teady state EWMA control limits are given by 

( UCL , LCL ) = μ0 + L 

√ 

λ

(2 − λ) 
σ0 (1.4) 

here L is a design parameter (charting constant) based on a cho-

en false alarm rate. Since the original EWMA chart uses a fixed

alue of the smoothing constant, λ, it does not do well, uniformly,

ver the entire range of possible shifts in the process mean. For

xample, it is known that the EWMA chart with a small λ does

ot detect “large” shifts as efficiently as the Shewhart chart. 

Lucas and Saccucci (1990) analyzed the performance of the

WMA chart utilizing a Markov Chain approach. Using simulations,

hey demonstrated that for small shifts in the process mean, the

WMA chart has better performance compared to the Shewhart

hart, when the average run length (ARL) is used as a performance

riterion. They also investigated the performance of a combined

hewhart and EWMA scheme in order to provide protection for

mall and large shifts in the process mean. 

Since the EWMA statistic also appears as the optimal forecast-

ng method for some time series model and is easier to apply than

he CUSUM chart, there is a lot of interest and consequently a sub-

tantial literature on EWMA charts. Klein (1996) obtained ARL pro-

les for both the composite Shewhart-EWMA scheme and the She-

hart chart with specified run rules. The ARL profiles were shown

s a function of the magnitude of the shift in the process mean.

he composite scheme using a Shewhart – EWMA combination de-

icted a better profile. Albin, Kang, and Shea (1997) studied several

chemes using individual observations. They investigated combina-

ions of the moving range, EWMA, and Shewhart charts with and

ithout runs rules. Using a simulation approach, they studied the

RL for shifts in the process mean as well as the process standard

eviation. Jiang, Shu and Apley (2008) studied the performance of

ome adaptive CUSUM procedures using EWMA-based shift esti-

ators. Using the concept of a loss function, Wu, Wang and Wang

2008) proposed an adaptive control chart to monitor the process

ean and variance. Wu, Yang, Khoo and Yu (2010) developed an

ptimization algorithm to design CUSUM charts to monitor both

he process mean and variability. They demonstrated that the per-

ormance of their control chart is nearly as good as an optimal

cheme that uses three individual CUSUM charts. Prior research
as also been conducted on integrating statistical process control

SPC) techniques with engineering process control (EPC) methods

hat use run-to-run controllers to dynamically control a process.

or example, Fan and Lin (2007) used an adaptive dual-response

ptimizing controller that serves as a recipe regulator between

onsecutive runs in wafer fabrication for semiconductor manufac-

uring processes. Our focus, however, is not on this aspect of dy-

amic engineering process control. 

Some researchers have recently considered data driven control

harts by using chart design parameters (including the charting

onstant) that adapt and adjust (upward or downward) dynami-

ally as the data are sequentially collected and observed. This is

n interesting and practically appealing idea. To this end, another

pproach for faster detection of small and moderate shifts in the

rocess mean is that of using “variable parameters” control charts.

ere, the design parameters such as the sample size, sampling in-

erval, and the charting constant are chosen to determine the lo-

ation of the control limits that are chosen adaptively ( Reynolds &

rnold, 2001 ). 

These design parameters may take on different values based on

he most recent information from the process. Tagaras (1998) pro-

ides a review of adaptive control charts where the design parame-

ers change dynamically. De Magalhães and Moura Neto (2005) de-

eloped a variables parameter X̄ and R charts so as to minimize

he expected cost. He and Grigoryan (2006) considered joint mon-

toring of the process through X̄ and R charts where they utilize

wo-stage sampling through double sampling and variable sample

izes. In addressing the issue of non-normality of the observations,

hrough a variables parameter X̄ chart, Lin and Chou (2007) con-

idered mean shifts in processes. In the context of multivariate

rocesses, a variables plan that considers changing the sample size,

ampling interval, and the action limit through an adaptive proce-

ure for a Hotelling’s T 2 chart was investigated by Chen (2007) .

his study was later extended by Chen and Hsieh (2007) where

he sampling interval was kept constant but the sample size and

ontrol limit varied adaptively. Our focus, in this paper, is not on a

ariables sampling plan where the sample size, sampling interval,

r control limits change from sample to sample. On the contrary,

ur objective is to keep the monitoring process simple. Through

he choice of adaptive weights, based on the observations, our goal

s to facilitate detection of a shift in the process mean. 

Hubele and Chang (1990) developed two adaptive EWMA

ontrol schemes. The weighting constant is updated using a

alman filter algorithm. Shu (2008) developed an adaptive EWMA

hart for monitoring process variances by using a Markov chain

odel. Steiner and Jones (2009) considered risk-adjusted sur-

ival time monitoring with an updating EWMA control chart.

ahmoud and Zahran (2010) considered a multivariate adaptive

WMA control chart that was a combination of the multivari-

te EWMA (MEWMA) chart and a Shewart χ2 -chart. Zhang, Li

nd Wang (2010) investigated the simultaneous monitoring of

he process mean and variability through a multivariate control

hart. Saleh, Mahmoud and Abdel-Salam (2012) studied the per-

ormance of the adaptive EWMA control chart with estimated

arameters using a Markov chain approach. Huang, Shu and

u (2014) conducted an evaluation of adaptive EWMA schemes.

hile the Markov chain method was originally used to approx-

mate ARL performance, it may have slow convergence. To over-

ome this, they extend the piecewise collocation method and the

lenshaw-Curtis (CC) quadrature method. Aly, Hamed and Mah-

oud (2015) considered he design of an adaptive EWMA con-

rol chart by considering the process mean shift as a random

ariable with a certain probability distribution. Aly, Mahmoud

nd Hamed (2015) ) studied the performance of the multivariate

daptive EWMA chart with estimated parameters. They consid-

red the practitioner-to-practitioner variation by using different
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Phase I samples by different practitioners. Aly, Saleh, Mahmoud

and Woodall (2015) further investigated the performance of the

adaptive EWMA chart with estimated parameters. Rather than uti-

lize the expected value of the in-control ARL, they used the stan-

dard deviation of the ARL metric to study the performance. Tang,

Castagliola, Sun and Hu (2017) considered a variable sampling in-

terval adaptive EWMA chart to monitor shifts in process mean. 

2. Adaptive EWMA chart 

To capture the desirable features of both the EWMA and the

Shewhart charts, that is to be able to detect both large and

small shifts effectively, that is data driven, Capizzi and Masarotto

(2003) proposed an adaptive EWMA (AEWMA) chart where the

smoothing constant λ changes based on the magnitude of the

residual at time t . Thus, the AEWMA chart examines what has hap-

pened with the data in the past, adapts and uses a possibly new

weighting constant, as it monitors the current observation. Their

monitoring statistic is given by 

Z t = Z t−1 + φ( e t ) , t = 1 , 2 , . . . (2.1)

where Z 0 = μ0 and e t = X t – Z t -1 . The choice of the score func-

tion, φ( e t ), defines the adaptive nature of the statistic. The score

function is proposed to be odd and monotone increasing in e t , and

when | e t | is small, it should be close to λe t , while when | e t | is

large, it should be close to e t . They proposed three score functions

given as follows: 

φhu (e ) = 

{ 

e + (1 − λ) k if e < −k 
λe if | e | ≤ k 
e − (1 − λ) k if e > k 

(2.2)

φbs (e ) = 

{
e 
{

1 − (1 − λ) (1 − e/k ) 
2 
}

if | e | ≤ k 

e otherwise 
(2.3)

and 

φcb (e ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e if e ≤ −p 1 
− ˜ φcb (1 − e ) if − p 1 < e < −p 0 
λe if | e | ≤ p 0 
˜ φcb (e ) if p 0 < e < p 1 

e if e ≥ p 1 

(2.4)

where 0 < λ ≤ 1, k ≥ 0, and 0 ≤ p 0 < p 1 denote suitable constants

and 

˜ φcb ( •) is the cubic polynomial that makes φcb ( •) and the first

derivative continuous, i.e., 

˜ φcb (e ) = λe + (1 − λ) 
(

e − p 0 
p 1 − p 0 

)2 

×
{ 

2 p 1 + p 0 − ( p 0 + p 1 ) 
(

e − p 0 
p 1 − p 0 

)} 

(2.5)

The first two φ-functions were based on Huber’s function

(Huber, 1981) and Tukey’s bi-square function ( Beaton and Tukey,

1974 ). The third φ-function blends the φ-functions of the Shewhart

and EWMA charting schemes. 

In the above φ-functions, λ and k are the design parameters as-

sociated with the control chart. Further, the chart signals when the

monitoring statistic Z t falls outside some bounds μ0 ± h σ 0 , where

σ0 is the process standard deviation and the charting constant h

is calculated for a chosen false alarm rate (level of a Type I error).

The monitoring statistic Z t given by Eqn. (2.1) can be re-expressed

as 

Z t = w ( e t ) X t + [ 1 − w ( e t ) ] Z t−1 (2.6)

where w ( e ) = φ( e )/ e , which represents the adaptive weight asso-

ciated with the adaptive EWMA (AEWMA) monitoring statistic of

Capizzi and Masarotto (2003) . 
Note that while the idea is appealing, there are some difficulties

n obtaining the “optimal” values for the design parameters λ, k ,

nd h for the implementation of the AEWMA chart. The usual con-

ept for determining optimal design parameter values is to min-

mize the out-of-control ARL, for a specified shift in the process

ean, while maintaining a desired in-control ARL( AR L 0 ) . The dif-

culty with this approach is that, as demonstrated also by Lucas

nd Saccucci (1990) , tuning the chart, that is finding the “optimal”

alues, depend on the magnitude of the shift, which is generally

nknown. Further, since the optimal value of λ varies quite a bit

ased on the size of the shift, the ARL of a control chart designed

or a small shift may be quite different from that designed for a

arge shift. 

In this context, finding the optimal values of the design pa-

ameters θ = ( λ, k, h ) computationally, as suggested by Capizzi and

asarotto (2003) , is quite complex. Their proposed strategy re-

uires the selection of a “small shift”, say denoted by μ1 , and the

election of a “large shift”, as denoted by μ2, by the user. Their

omputational procedure is a two-phased approach. In the first

hase, the optimal parameter, θ , is found based on a solution to

he following optimization problem: 

inimize ARL ( μ2 , θ ) 
θ

ubject to : ARL ( 0 , θ ) = B 

(2.7)

here ARL (0, θ ) denotes the desired in-control ARL corresponding

o a chosen false alarm rate. 

The second phase of their computational approach involves first

hoosing a small positive constant, α, say α = 0.05. The “optimal”

is found as the solution to the problem: 

inimize ARL ( μ1 , θ ) 
θ

ubject to : ARL ( 0 , θ ) = B 

and ARL ( μ2 , θ ) < ( 1 + α) ARL ( μ2 , θ ∗) 

(2.8)

The idea is to find the scheme with the minimum ARL when

he mean is at μ1 , among those for which ARL at μ2 is “nearly

inimum”. Thus, knowledge (or assumption) of μ1 and μ2 is neces-

ary in order to implement the complex two-phased optimization

roblem. In practical applications, such an approach is difficult to

mplement since the degree of shift may not be known. 

Thus, our motivation is to propose an adaptive EWMA-type

ontrol chart for which the design parameters can be found more

asily so that its application can be facilitated in practice. As op-

osed to the scheme proposed by Capizzi and Masarotto (2003) ,

here three design parameters are to be determined, we propose

n adaptive EWMA-type chart, in which the smoothing constant

s chosen adaptively based on the data and is the only parameter

o be estimated. Further, no assumption needs to be made on the

ize of a shift, whether it is “small” or “large”, in the process mean,

aking it more realistic in terms of application. This is described

n the next section. 

. Proposed adaptive control chart 

In the proposed approach, we incorporate and use a “look-back”

eature, as defined by a parameter, r( ≥ 2 ) , in the definition of

he EWMA-type monitoring statistic Thus, rather than considering

he entire history involving all the past observations, we consider,

tarting with the current observation, using the previous r -1 obser-

ations. Hence, we keep the spirit of the idea behind the original

WMA statistic, that is including the past observations to monitor

he present, but we only choose to weigh the last ( r -1) observa-

ions, with the weights declining in a geometric series as in the

riginal EWMA. The motivation behind using the look-back param-

ter is to overcome the inertial effect of the distant past observa-

ions in detecting a shift in the process mean by the EWMA chart
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0  
 Woodall & Mahmood, 2005; Yashchin, 1995 ). In our proposal, the

eights assigned to the current observation, and the ( r -1) prior ob-

ervations are determined adaptively. Observations that are further

ack in the past from the current period i , will receive less weight,

ith the weights decreasing exponentially, while observations that

re more distant than the r th, ( r + 1)th, and further from the cur-

ent period will receive a zero weight. As we will see, the weights

ill be influenced by the magnitude of the deviation of the obser-

ations from the specified target value of the mean, μ0 . 

At time i , for a given r , we define the statistic: 

(i, r, w ) = 

i ∑ 

j= i −r+1 

w i (1 − w i ) 
i − j 

[
X j − μ0 

]2 
(3.1)

The “optimal” adaptive weight, for given values of i and r , is

efined as 

 

∗( i, r ) = arg max 
w 

M(i, r, w ) , w ∈ [ 0 , 1 ] (3.2)

Thus, for a given value of r , at a certain time period i , the value

f w that maximizes M( i, r, w ) is the proposed adaptive weight, de-

oted by w 

∗(i, r) , to be found from Eq. (3.2) . This optimal weight

epends on the observations, starting with the current period and

ooking back ( r – 1) periods. Using this optimal weight, the moni-

oring statistic for the proposed adaptive EWMA-type chart is 

(i, r, w 

∗) = 

i ∑ 

j= i −r+1 

w 

∗(i, r) (1 − w 

∗(i, r)) 
i − j ∗

[
X j − μ0 

]2 
(3.3)

The adaptive EWMA-type control chart that uses the monitor-

ng statistic given by Eq. (3.3) is labeled as the AE chart. The com-

utation and use of the proposed adaptive chart is rather simple

elative to the AEWMA chart of Capizzi and Masarotto (2003) . First,

ur proposal does not require values for the size of a “small” and

hat of a “large” shift. Further, computationally it does not require

 two-stage optimization procedure, for which the determination

f the chart design parameters are quite involved. The simplicity

f the proposed chart, in practice, is seen as a major advantage.

owever, note that the AE chart does require a user-specified value

f the look-back parameter r, which is a measure of the degree of

mphasis on prior observations as selected by the user. 

.1. Insights on the proposed adaptive chart (AE) 

To obtain the optimal value of the adaptive weight w 

∗( i , r ), for a

iven value of i and r , we maximize the value of M ( i , r , w ) as given

y Eq. (3.1) . Using μ0 = 0, it is observed that, for i = 2, and r = 2, for

xample, 

 ( 2 , 2 , w ) = 

2 ∑ 

j=1 

w 2 (1 − w 2 ) 
2 − j 

X 

2 
j 

= w 2 (1 − w 2 ) X 

2 
1 + w 

2 
2 X 

2 
2 (3.4) 

Maximizing M (2, 2, w ) with respect to w , we find 

 

∗( 2 , 2 ) = (X 

2 
2 + X 

2 
1 ) / 2 X 

2 
1 . 

Hence, since w 

∗ ∈ ( 0 , 1 ) , we have 

 

∗( 2 , 2 ) = min [(X 

2 
2 + X 

2 
1 ) / 2 X 

2 
1 , 1] . 

By induction, it can be shown that for r = 2, for any observation

t period i , the optimal adaptive weight w 

∗(i, 2) is given by 

 

∗(i, 2) = min 

[
(X 

2 
i + X 

2 
i −1 ) / 2 X 

2 
i −1 , 1 

]
(3.5) 

Hence, it can easily be shown that the monitoring statis-

ic, M(i, 2 , w 

∗) , for the proposed adaptive EWMA-type chart
hen r = 2 is 

(i, 2 , w 

∗) = 

{ 

w 

∗(i, 2)(1 − w 

∗(i, 2) X 

2 
i −1 

i f 0 < w 

∗(i, 2) < 1 

+ w 

∗(i, 2) X 

2 
i 
, 

X 

2 
i 
, i f w 

∗(i, 2) = 1 

(3.6) 

The simulation study reported in the next section demonstrates

he performance of the various control charts. Here 30 observa-

ions are generated from an in-control process and starting with

eriod 31, 30 more observations are generated from the process

ith a shifted mean. So, if we are currently in period i = 35, and

= 35, we have 5 observations from the shifted process and 30 ob-

ervations from the in-control process to determine the adaptive

eight w 

∗(i, r) . 

. Performance of the proposed adaptive control chart 

A simulation study is conducted to examine the performance of

he proposed adaptive control chart (AE). For a chosen magnitude

f a shift in the process mean, the selected performance measure

s the average time to first detection of the shift (the average run

ength, ARL). Initially, the process mean is assumed to be in a state

f control with mean μ0 = 0 and variance σ 2 
0 

= 1. Hence, the obser-

ations prior to the shift are generated from N(0,1). The degree of

hift in the process mean is represented by δσ 0 , where δ is a cho-

en parameter that is selected to vary between 0.1 and 4.0. Thus,

small” and “large” degrees of shift of the process mean in the sim-

lation are represented by values of δ. Using 10,0 0 0 replications,

he run length, the mean run length (ARL) and the standard er-

or of the run length (SERL) are calculated for the proposed adap-

ive control chart. The SERL is the standard deviation of the run

ength (SDRL) divided by the square root of 10,0 0 0, the number of

eplications. 

For an in-control process, three values of α, the Type I error

robability (the false alarm rate) were selected, namely 0.05, 0.01,

nd 0.005. For each selected value of α, the bound h for the de-

ection of a shift was determined through an empirical approach.

or a selected value of r , the look-back parameter, for each value

f the current time period i , the monitoring statistic M( i, r, w 

∗) is

ound over 10,0 0 0 replications, when the observations are from an

n-control process. The values of the statistic are ranked and the

pper 100 αth percentile, for example, the 500th largest value if α
s chosen to be 0.05, is selected as the bound, h . This bound is then

sed in the second phase of the simulation when a change occurs

n the process mean. For the initial set of data from the in-control

rocess, 30 observations are generated from a N(0, 1) distribution.

ubsequently, for the shifted process, the process mean value, μ1 ,

as chosen to be as follows: 0.10, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5,

.0, and 4.0, respectively. The selected number of look-back pe-

iods, r , starting with the current observation, was chosen to be

 = 2, 3, 5, and 10, respectively. 

Table 1 shows the ARL and the SERL of the proposed adaptive

ontrol chart (AE) for α = 0.05 over 10,0 0 0 replications. For exam-

le, for a very small shift in the process mean of 0.1 standard de-

iations, when r = 2, the out-of-control (OOC) average run length

ARL) is 22.837, with a standard error of 0.098. As r increases to 3,

, or 10, the ARL increases to 24.738, 26.560, and 27.100, respec-

ively. These results represent the inertial effect on shift detection.

o detect a smaller shift in the process mean, a “look-back” fea-

ure where r is small, say 2 or 3, will detect the shift faster than

hen r is large, say 5 or 10. As the degree of shift in the process

ean increases, as expected, in general the OOC ARL decreases. For

hifts as large as 3 standard deviations, note that for a small r , such

s r = 2, the ARL for detection is 1.368, with a standard error of

.006. Note that not only is the OOC ARL smaller, but also the SE,
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Table 1 

Mean (Standard error) of run length of adaptive control 

chart ( α = 0.05, μ0 = 0, σ = 1). 

AE 

μ1 , σ r = 2 r = 3 r = 5 r = 10 

0.1, 1 22.837 24.738 26.560 27.100 

(0.098) (0.089) (0.076) (0.071) 

0.25, 1 22.675 23.798 25.608 26.700 

(0.098) (0.094) (0.083) (0.039) 

0.40, 1 20.566 22.436 25.124 25.974 

(0.104) (0.099) (0.086) (0.081) 

0.50, 1 19.757 21.044 23.477 24.959 

(0.104) (0.103) (0.095) (0.087) 

0.75, 1 15.577 17.516 19.807 21.390 

(0.104) (0.106) (0.105) (0.102) 

1.0, 1 11.521 12.770 15.282 17.280 

(0.091) (0.095) (0.102) (0.105) 

1.5, 1 5.357 6.234 7.209 8.807 

(0.049) (0.056) (0.064) (0.075) 

2.0, 1 2.915 3.186 3.593 4.379 

(0.024) (0.027) (0.031) (0.038) 

3.0, 1 1.368) 1.328 1.456 1.639 

(0.006) (0.006) (0.008) (0.010) 

4.0, 1 1.054 1.031 1.065 1.111 

(0.002) (0.002) (0.003) (0.004) 

Table 2 

Mean (Standard Error) of run length of EWMA Chart ( α = 0.05, 

μ0 = 0, σ = 1). 

EWMA 

μ1 , σ w = 0.1 w = 0.3 w = 0.5 w = 0.7 w = 0.99 

0.1, 1 30 30 29.997 29.913 29.256 

(0.000) (0.000) (0.001) (0.013) (0.038) 

0.25, 1 30 30 29.995 29.86 29.064 

(0.000) (0.000) (0.003) (0.016) (0.042) 

0.40, 1 30 29.999 29.979 29.771 28.642 

(0.000) (0.000) (0.005) (0.021) (0.049) 

0.50, 1 30 29.998 29.965 29.648 28.244 

(0.000) (0.002) (0.008) (0.025) (0.056) 

0.75, 1 30 30 29.887 29.251 26.717 

(0.000) (0.000) (0.015) (0.037) (0.074) 

1.0, 1 30 29.992 29.678 28.315 24.329 

(0.000) (0.003) (0.024) (0.054) (0.091) 

1.5, 1 30 29.847 27.584 23.058 15.830 

(0.000) (0.0015) (0.064) (0.096) (0.103) 

2.0, 1 29.999 27.332 19.480 12.940 7.767 

(0.000) (0.063) (0.102) (0.094) (0.068) 

3.0, 1 22.754 7.7354 4.481 3.127 2.212 

(0.064) (0.046) (0.031) (0.023) (0.016) 

4.0, 1 8.435 3.035 1.949 1.503 1.239 

(0.022) (0.012) (0.009) (0.007) (0.005) 
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for smaller values of r . For this same degree of shift, if r increases

to 10, the OOC ARL is 1.639, with a standard error of 0.010. For

larger shifts in the process mean, the inertial effect on shift detec-

tion diminishes. As an example, for a shift of 4 standard deviations,

there is not much of a difference in the ARLs as r varies from 2 to

10. To summarize the results from this table, a small value of the

“look-back” parameter r , will detect smaller shifts in the process

mean faster, as measured by ARL, with also a reduced variability,

as measured by SERL. This is because of the less inertial effect of

observations from the in-control process. 

Table 2 displays the ARL and SERL values of the traditional

EWMA control chart for a given smoothing constant, w . The values

of the smoothing constant are chosen to be 0.1, 0.3, 0.5, 0.7, and

0.99, respectively. Note that when w = 0.99, the EWMA statistic

approaches the traditional Shewhart statistic for individuals. The

parameters of the simulation are similar to that used for Table 1 ,

with an α = 0.05. Here, we do not have a look-back feature since
he EWMA control chart considers all observations, prior to, and

ncluding the current observation. In comparing the performance

f the AE control chart with the EWMA chart, it is seen that the

roposed AE chart performs uniformly better than the EWMA chart

ver the range of the simulated parameters. First, when a value for

OC ARL (SERL) is shown as 30 (0.0 0 0), it means that for each

f the 10,0 0 0 simulations, the EWMA control chart failed to de-

ect the mean shift within the span of thirty new observations

rom the out-of-control process. So, in a sense, the OOC ARL is ac-

ually 30 or more. However, in our simulation scheme, since we

onsidered up to a maximum of 30 new observations, we conclude

hat the OOC ARL is at least 30. 

Next, we note that in comparing the results in Tables 1 and 2 ,

ver all degrees of shift in the process mean and all values of the

eight ( w ) used in the EWMA chart, the AE chart has better per-

ormance than that of the EMWA chart. For example, for a shift

n the process mean of one standard deviation, for the AE estima-

or with r = 2, the OOC ARL (SERL) is 11.521 (0.091). This domi-

ates the OOC ARL of the EWMA chart for any level of the con-

tant weight ( w ), the best scenario being for w = 0.99, when the

orresponding values are 24.329 (0.091). If a one-tailed t - test for

omparison of ARLs were to be performed, the t -statistic is −99.52

nd the p-value is found to be < 0.0 0 01. For any reasonable level

f a chosen level of significance, we conclude that the ARL for the

E control chart is less than the corresponding ARL for the best

WMA chart. 

If a similar comparison were to be made for a shift in the pro-

ess mean of two standard deviations the corresponding values

f the OOC ARL (SERL) for the AE estimator with r = 2 are 2.915

0.024), while for the traditional EWMA with a constant weight in

he best scenario with a w = 0.99 are 7.767 (0.068). As before, if

 one-tailed t – test for comparison of ARLs were to be performed

he t -statistic is −67.29 and the p-value is found to be < 0.0 0 01. As

he degree of shift in the process mean increases, the performance

f the proposed AE control chart, relative to the EWMA chart, di-

inishes as expected. For large shifts in the process mean, the OOC

RL should decrease for all control charts and so the relative ad-

antages of the AE chart is reduced. One can infer that for the AE

hart, which finds an “optimal” adaptive weight based on the data,

nd uses the depth of the “look-back” feature through the choice of

 parameter, the overall performance dominates the performance

f the chart that uses a constant weight. 

Table 3 shows the ARL and SERL of the AE control chart with a

hosen α= 0.01 over 10,0 0 0 replications. As in the previous sim-

lations, the “look-back feature” as indicated by the parameter r

s varied. The performance is similar to that observed in Table 1 .

bviously, with a reduced value in the choice of α, the ARLs in

etecting a shift are increased, relatively speaking. 

Table 4 shows the ARL and SERL of the EWMA control chart

ith a chosen α = 0.01 over 10,0 0 0 replications. In comparing the

erformance of the AE control chart to the EWMA control chart,

he proposed chart is found to perform uniformly better, as we

ound previously in the case of α = 0.05. As an example, for a shift

n the process mean of one standard deviation, for the AE estima-

or with r = 2, the OOC ARL (SERL) is 20.851 (0.103). This dominates

he OOC ARL of the EWMA chart, for any level of the constant

eight w , the best scenario being for w = 0.99, when the corre-

ponding values are 28.085 (0.058). If a one-tailed t- test for com-

arisons of the ARLs were to be conducted, the t -statistic is −61.20

nd the p-value is found to be < 0.0 0 01. This demonstrates that

he OOC ARL for the AE chart is less than the corresponding OOC

RL for the best EWMA chart under the situation, establishing the

uperiority of the AE chart. Such dominance is observed across all

evels of the shift in the process mean. 

As expected, as the chosen level of significance ( α) decreases,

he degree of superiority of the AE chart over the EWMA chart
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Table 3 

Mean (Standard Error) of run length of adaptive control 

chart ( α = 0.01, μ0 = 0, σ = 1). 

AE 

μ1 , σ r = 2 r = 3 r = 5 r = 10 

0.1, 1 28.859 28.797 29.459 29.545 

(0.045) (0.046) (0.032) (0.029) 

0.25, 1 28.073 28.818 29.125 29.186 

(0.058) (0.047) (0.041) (0.039) 

0.40, 1 27.434 28.006 28.615 29.003 

(0.067) (0.059) (0.051) (0.043) 

0.50, 1 26.638 27.251 28.116 28.500 

(0.075) (0.069) (0.058) (0.052) 

0.60, 1 26.306 26.985 27.691 28.122 

(0.078) (0.072) (0.064) (0.058) 

0.75, 1 24.271 25.838 26.858 27.788 

(0.091) (0.082) (0.073) (0.062) 

1.0, 1 20.851 22.433 23.928 25.062 

(0.103) (0.099) (0.093) (0.087) 

1.5, 1 11.908 13.222 15.870 16.746 

(0.093) (0.098) (0.105) (0.106) 

2.0, 1 5.640 6.377 7.598 8.686 

(0.051) (0.057) (0.067) (0.075) 

3.0, 1 1.919 1.983 2.309 2.547 

(0.013) (0.014) (0.017) (0.020) 

4.0, 1 1.172 1.137 1.201 1.304 

(0.005) (0.004) (0.005) (0.006) 

Table 4 

Mean (Standard Error) of Run Length of EWMA Chart ( α = 0.01, μ0 , 

σ = 1). 

EWMA 

μ1 , σ w = 0.1 w = 0.3 w = 0.5 w = 0.7 w = 0.99 

0.1, 1 30 30 30 29.989 29.886 

(0.000) (0.000) (0.000) (0.004) (0.013) 

0.25, 1 30 30 30 29.987 29.791 

(0.000) (0.000) (0.000) (0.003) (0.029) 

0.4,1 30 30 29.997 29.964 29.649 

(0.000) (0.000) (0.003) (0.009) (0.026) 

0.5, 1 30 30 29.998 29.948 29.531 

(0.000) (0.000) (0.001) (0.009) (0.030) 

0.6, 1 30 30 29.996 29.938 29.428 

(0.000) (0.000) (0.020) (0.011) (0.033) 

0.75, 1 30 30 29.994 29.879 29.102 

(0.000) (0.000) (0.003) (0.015) (0.041) 

1.0, 1 30 30 29.977 29.718 28.085 

(0.000) (0.000) (0.007) (0.023) (0.058) 

1.5, 1 30 29.997 29.675 28.140 23.348 

(0.000) (0.002) (0.024) (0.057) (0.095) 

2.0, 1 30 29.747 27.134 21.894 14.416 

(0.000) (0.021) (0.067) (0.099) (0.101) 

3.0, 1 29.663 16.556 9.003 5.678 3.593 

(0.017) (0.009) (0.067) (0.046) (0.029) 

4.0, 1 13.812 4.685 2.825 2.051 1.537 

(0.040) (0.021) (0.015) (0.013) (0.013) 
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Table 5 

Mean (Standard Error) of run length of adaptive control 

chart ( α = 0.005, μ0 , = 0, σ = 1). 

AE 

μ1 , σ r = 2 r = 3 r = 5 r = 10 

0.1, 1 324.475 391.276 407.213 412.134 

(1.789) (1.611) (1.543) (1.514) 

0.25, 1 252.288 340.766 374.808 414.223 

(1.765) (1.759) (1.693) (1.493) 

0.40, 1 212.652 251.758 327.054 372.257 

(1.649) (1.763) (1.790) (1.704) 

0.50, 1 198.505 261.307 287.905 323.269 

(1.589) (1.755) (1.797) (1.799) 

0.60, 1 182.304 154.892 279.689 293.928 

(1.467) (1.315) (1.774) (1.784) 

0.75, 1 115.847 124.433 169.515 257.053 

(1.052) (1.111) (1.432) (1.749) 

1.0, 1 61.462 83.221 103.843 132.061 

(0.611) (0.822) (1.014) (1.233) 

1.5, 1 19.029 30.643 31.348 38.968 

(0.188) (0.316) (0.322) (0.388) 

2.0, 1 7.572 7.426 10.799 11.773 

(0.069) (0.068) (0.096) (0.106) 

3.0, 1 2.497 2.657 2.739 3.111 

(0.019) (0.021) (0.022) (0.026) 

4.0, 1 1.257 1.247 1.365) 1.399 

(0.005) (0.005) (0.007) (0.008) 

Table 6 

Mean and standard deviation of run length of adaptive control chart (in-control 

ARL = 100). 

μ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 

Mean 101.19 81.29 50.64 27.45 15.26 6.39 3.40 1.99 

S.D. 3.06 2.65 1.63 1.11 0.59 0.25 0.12 0.06 

μ

3.00 3.50 4.00 5.00 6.00 

Mean 1.51 1.18 1.05 1.006 1 

S.D. 0.03 0.01 0.01 0.003 0 
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ecreases. However, there is still evidence of a significant improve-

ent of the AE chart across all levels of the parameters. 

Table 5 shows the ARL and SERL of the AE control chart with

 chosen α = 0.005 over 10,0 0 0 replications. As before, the “look-

ack” parameter r is varied. The results match the previously es-

ablished patterns. 

Based on these results, we now summarize the performance

f the proposed adaptive control chart relative to the EWMA con-

rol chart. In general, the AE control chart performs uniformly bet-

er than the traditional EWMA control chart that uses a constant

moothing factor. Since the inertial effect is somewhat represented

y the value of r , for small shifts in the process mean, a small value

f r performs quite well. When the shift in the process mean is

arge, say four standard deviations or more, the magnitude of the

look-back” window size does not have a major impact on the ARL.
For the EWMA control chart with a constant weight, we note

hat the ARL (SERL) are 30(0.0 0 0), for small shifts in the process

ean (say μ1 = 0.1, 0.25, 0.40, 0.50, 0.60) and small smoothing

onstants (say w = 0.1, 0.3). This means that the shifts were not

etected, for each of the simulations, over the period of 30 new

bservations for the shifted process. 

The simulation results for the performance of the proposed

daptive control chart are shown for various values of the “look-

ack” window parameter, r . In particular, Tables 1, 3 , and 5 show

he results on the out-of-control ARL and the standard error of run

ength for values of r = 2, 3, 5, and 10. Comparison of these results

ndicate the sensitivity of the parameter, r . In general, the following

ehavior is observed. As the value of the parameter r increases, the

ut-of-control ARL increases. This is likely due to the inertial effect

f the observations from the in-control process for large values of

 . Further, the sensitivity of the parameter r based on the degree

f shift (μ1 ) of the process mean is also observed from Tables 1,

 , and 5 , respectively. Finally, the chosen in-control ARL may also

ave an effect on the sensitivity of the parameter r . 

Consider, for example, Table 1 , for an in-control ARL of 20, and

 quite small shift in the process mean as indicated by μ1 = 0.1.

bserve the increase in the out-of-control ARL as r increases from

 to 10. For the extreme values of r of 2 and 10, the increase is

bout 18.3%. For a moderate shift in the process mean as indicated

y μ1 = 1.0, between values of r = 2 and 10, the increase in out-

f-control ARL is about 50%. Finally, for large shifts in the process

ean as indicated by μ = 3.0, the increase in out-of-control ARL,
1 
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Table 7 

Mean and standard deviation of run length of adaptive control chart (in-control 

ARL = 500). 

μ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 

Mean 500.57 365.97 193.52 109.445 55.72 18.08 7.20 3.78 

S.D. 21.2 15.93 8.65 5.16 2.49 0.81 0.29 0.14 

μ

3.00 3.50 4.00 5.00 6.00 

Mean 2.004 1.51 1.24 1.03 1.002 

S.D. 0.06 0.03 0.02 0.008 0.002 
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between r = 2 and 10, is about 19.8%. The greatest impact of r is

found for shifts in the mid-range. 

Similar inferences may be drawn from the results in

Tables 3 and 5 , respectively. Let us consider Table 3 , for an

in-control ARL of 100. Now, for a quite small shift in the process

mean (μ1 = 0.1), as r increases from 2 to 10, the out-of-control

ARL, increases by about 2.38%. For a moderate shift in the process

mean (μ1 = 1.0), the increase in out-of-control ARL as r increases

from 2 to 10, is about 20.2%. When the process mean shifts

to μ1 = 1.5, the increase in out-of-control ARL, as r increases

from 2 to 10, is about 40.6%. For a shift of the process mean to

μ1 = 2.0, the corresponding increase in out-of-control ARL is about

54%. Finally, for large shifts in the process mean (μ1 = 3.0), as r
Fig. 1. Out-of-control ARL of proposed adaptive control chart versus Capizzi and Masarot

Note: OPTAE is the proposed adaptive chart; others are Capizzi and Masarotto (2003) sch

is μ1 = 0.50 and μ2 = 4; AWEMA3 is μ1 = 1.00 and μ2 = 4; AWEMA4 is μ1 = 0.25 an

AWEMA7 is μ1 = 0.25 and μ2 = 6; AWEMA8 is μ1 = 0.50 and μ2 = 6; AWEMA9 is μ1 
ncreases from 2 to 10, the out-of-control ARL increases by about

2.7%. As the process mean shifts more (μ1 = 4.0), from r = 2 to

0, the out-of-control ARL increases by about 11.3%. It seems that

 behavior, similar to that observed previously from Table 1 is

bserved. 

Let us now consider Table 5 , where the in-control ARL is 200.

ow, for a small shift (μ1 = 0.1), as r changes from 2 to 10, the

ut-of-control ARL increases by about 27%. For a small shift of

agnitude represented by μ1 = 0.25, the corresponding increase in

ut-of-control ARL, as r increases from 2 to 10, is about 64.2%.

or a moderate shift in the process mean (μ1 = 1.0), the increase

n out-of-control ARL is about 114.9%. For another moderate shift

μ1 = 1.5), as r increases from 2 to 10, the out-of-control ARL in-

reases by about 104.8%. Finally, for large shifts in the process

ean (μ1 = 3.0), the increase in out-of-control ARL is about 24.6%,

s r increases from 2 to 10. These results demonstrate the sensitiv-

ty of the parameter r . 

Let us study the sensitivity of the proposed chart, with respect

o the parameter r , based on the chosen in-control ARL. Compar-

ng the results in Tables 1, 3 , and 5 as the in-control ARL changes

rom 20 to 100 to 200, we observe the following trend. As in-

ontrol ARL changes from 20 to 200, the increase in out-of-control

RL, as the parameter r increases from 2 to 10, is prone to greater

hanges as the in-control ARL increases. Such behavior is observed,

n general, across all levels of the shift in the process mean. As an

xample, for a small shift (μ = 0.5), as r changes from 2 to 10,
1 

to (2003) schemes (In-control ARL = 100) 

emes using Huber’s score function: AWEMA1 is μ1 = 0.25 and μ2 = 4; AWEMA2 

d μ2 = 5; AWEMA5 is μ1 = 0.50 and μ2 = 5; AWEMA6 is μ1 = 1.00 and μ2 = 5; 

= 1.00 and μ2 = 6. 
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Fig. 2. Out-of-control ARL of proposed adaptive control chart versus Capizzi and Masarotto (2003) schemes (In-control ARL = 500) 

Note: OPTAE is the proposed adaptive chart; others are Capizzi and Masarotto (2003) schemes using Huber’s score function: AWEMA1 is μ1 = 0.25 and μ2 = 4; AWEMA2 

is μ1 = 0.50 and μ2 = 4; AWEMA3 is μ1 = 1.00 and μ2 = 4; AWEMA4 is μ1 = 0.25 and μ2 = 5; AWEMA5 is μ1 = 0.50 and μ2 = 5; AWEMA6 is μ1 = 1.00 and μ2 = 5; 

AWEMA7 is μ1 = 0.25 and μ2 = 6; AWEMA8 is μ1 = 0.50 and μ2 = 6; AWEMA9 is μ1 = 1.00 and μ2 = 6. 
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t  
he difference in the out-of-control ARL increase is about 8.7%, as

he in-control ARL changes from 20 to 200. For a moderate shift

μ1 = 1.0), the difference in the out-of-control ARL increase, under

imilar conditions, when in-control ARL changes from 20 to 200, is

bout 64.9%. For large shifts, the difference in out-of-control ARL,

s r changes from 2 to 10, is smaller as in-control ARL increases

rom 20 to 200. 

Since the proposed adaptive control chart was motivated by the

EWMA chart of Capizzi and Masarotto (2003) , a comparison of

heir performance is of interest. This is studied here. The parame-

ers to create these tables have been selected to match those in the

apizzi and Masarotto (2003) paper – i.e., Tables 6 and 7 , in that

aper. Note that Table 6 corresponds to an in-control ARL of 100

nd Table 7 corresponds to an in-control ARL of 500, for different

evels of the process mean shift (μ1 ). The value of the parameter

 is 100 in Table 6 and 500 in Table 7 , respectively. In the Capizzi

nd Masarotto (2003) paper, the Huber’s score function indicated

y φhu ( •), was shown to perform better, in general. Hence, in our

tudy, we compare the performance of our proposed adaptive con-

rol chart with the AEWMA chart based on φhu ( •). We report both

he out-of-control ARL as well as the standard deviation of the run

ength. The Capizzi and Masarotto (2003) paper reports only the

RL. For the sake of brevity, the results from Capizzi and Masarotto

2003) Tables 6 and 7 are not reproduced here. 

From Table 6 (in-control ARL = 100), we observe that for small

hifts in the process mean (μ ≤ 1.50), the out of control ARL of the
EWMA chart based on Huber’s function is shorter than that of the

roposed adaptive control chart. However, the difference decreases

apidly with the degree of increase in the process mean. When the

hift in the process mean is moderate to large (μ ≥ 2.00), the pro-

osed adaptive control chart performs better than that of Capizzi

nd Masarotto. Obviously, as may be expected, for very large shifts

μ ≥ 5.00), the detection is usually on the very first subgroup 

rawn after the shift. 

Fig. 1 shows the out-of-control ARL for different values of the

hift of the process mean (μ1 ) when the in-control ARL = 100. The

roposed adaptive chart is labeled as OPTAE. The other schemes

re those based on the choices of μ1 and μ2 for the ɸ hu ( •) (Hu-

er function) as shown in Table 6 of Capizzi and Masarotto (2003) .

s discussed earlier, the proposed adaptive chart dominates the

EWMA chart of Capizzi and Masarotto for the range of μ ≥ 2.00.

he labels AEWMA1 to AEWMA9 correspond to nine choices of μ1 

nd μ2 combinations, respectively, for the Capizzi and Masarotto

cheme based on Huber’s score function. For example, AEWMA1

orresponds to μ1 = 0.25, μ2 = 4, and AEWMA9 corresponds to

1 = 1.00, μ2 = 6, respectively. 

Along similar lines, Table 7 demonstrates the performance of

he proposed adaptive control chart, for chosen values of the mean

hift as in Capizzi and Masarotto (2003) , when the in-control ARL

s selected to be 500 ( Table 7 in Capizzi and Masarotto (2003) ).

ere again, we compare the performance of the proposed adap-

ive control chart with the Capizzi and Masarotto (2003) scheme
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Table 8 

Mean (Standard Error) of RUN Length of AE Chart and EWMA chart ( α = 0.01) for data from a chi-squared distribution. 

AE EWMA 

μ0 , σ0 μ1 , σ1 r = 2 r = 3 r = 5 r = 10 w = 0.1 w = 0.3 w = 0.5 w = 0.7 w = 0.99 

2, 4 3, 6 29.037 28.894 29.038 29.779 29.321 29.651 29.707 29.827 29.879 

(0.131) (0.139) (0.132) (0.064) (0.099) (0.077) (0.073) (0.057) (0.049) 

2, 4 4, 8 27.021 27.237 28.211 28.182 28.132 28.276 28.618 28.125 28.291 

(0.091) (0.182) (0.111) (0.192) (0.091) (0.071) (0.067) (0.076) (0.079) 

2, 4 5, 10 24.122 24.124 27.139 27.113 27.115 27.265 27.556 27.567 27.572 

(0.103) (0.192) (0.103) (0.157) (0.115) (0.095) (0.086) (0.074) (0.081) 

2, 4 7, 14 19.455 20.546 23.134 23.557 24.427 24.528 24.528 24.902 24.229 

(0.093) (0.122) (0.111) (0.174) (0.117) (0.081) (0.099) (0.082) (0.102) 
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using Huber’s score function. On comparison, we find that the pro-

posed adaptive control chart dominates the Capizzi and Masarotto

(2003) AEWMA chart for mean shifts in the range μ ≥ 3.00. As

before, shifts of magnitude of six or more standard deviations

are usually detected on the first subgroup drawn after the shift.

Fig. 2 shows the ARL for the proposed adaptive chart and the

Capizzi and Masarotto (2003) AEWMA charts for different levels

of mean shifts. 

In conclusion, since the degree of “small shift” (μ1 ) and degree

of “large shift” (μ2 ) are most likely to be not known in practice, the

utility of the proposed adaptive control chart is justified. In fact,

a true comparison is not possible since our adaptive chart does

not utilize a value of μ1 and μ2 , which the Capizzi and Masarotto

scheme does. 

We compare the results from our Table 6 (in-control ARL = 100)

and Table 7 (in-control ARL = 500) to those of the Capizzi and

Masarotto (2003) scheme ( Table 6 (in-control ARL = 100), and

Table 7 (in-control ARL = 200)). As discussed previously, the pro-

posed adaptive control chart dominates the AEWMA chart for

moderate to large shifts in the process mean. Since the AEWMA

chart requires the knowledge of μ1 and μ2 , the degree of small

and large shifts, which are not known in practice, we compare the

performance of our adaptive control chart with the “best” among

all of the 9 charts from Capizzi and Masarotto (2003) , for a given

shift (μ). For example, for an in-control ARL = 100, the percent-

age gains in ARL are 3.96%, 5.63%, 9.92%, 7.89%, and 14.02%, re-

spectively, when the corresponding values of the shifted process

mean (μ) are 2.50, 3.00, 3.50, 4.00, and 5.00, respectively. When

the in-control ARL = 500, corresponding gains in ARL of our pro-

posed adaptive control chart, relative to the “best” AEWMA Capizzi

and Masarotto scheme, are 1.28%, 2.58%, 1.59%, and 0.96%, re-

spectively, when corresponding values of the process mean (μ)

are 3.0 0, 3.50, 4.0 0, and 5.0 0, respectively. It seems that the re-

duction in the out-of-control ARL, by using our proposed adap-

tive control chart, is higher for smaller values of the in-control

ARL. 

5. Conclusions 

An adaptive EWMA-type control chart (AE chart) is proposed

in the context of monitoring possible shifts in the process mean.

One of the existing adaptive control charts in the literature, the

AEWMA chart, does not seem to be readily implementable in prac-

tice for a couple of reasons. First, it requires a specification or an

assumption about two kinds of possible shifts in the process mean

to be a “small” and a “large” shift. One usually does not know the

degree of shift that has taken place in the process in practice so

this may be questionable. Second, the use of the AEWMA chart

requires the solution of a complex two-step optimization prob-

lem in order to determine the chart parameters. These practical

drawbacks lead to the motivation of our proposed adaptive control

chart. 
In the proposed AE chart, no quantitative assessment of the de-

ree of a “small” or “large” shift is necessary. The chosen adap-

ive weights are influenced by the observations in the current pe-

iod and those within the framework of the “look-back” window.

 two-step computation, as in the case of the AEWMA chart, is

lso not necessary, but one does need to specify the look-back pa-

ameter, or use the entire past, which offers some nice practical

exibility to the user and gives the chart a more data driven look. 

The proposed AE chart is seen to outperform the traditional

WMA chart in all of the comparisons. This is indeed noteworthy.

f course, the traditional EWMA chart uses a constant smoothing

actor. In comparison with the AEWMA chart, it is easier and more

ractical to use. Also, the proposed AE chart is observed to outper-

orm the AEWMA chart for certain ranges in the shift of the pro-

ess mean, typically larger shifts. Another reason for the choice of

he proposed AE control chart is that it is more in-control robust.

or non-normal distributions, it has been shown that the AEWMA

hart is non-robust ( Zheng & Chakraborti, 2016 ). To explore the ro-

ustness of the proposed AE control chart, we performed a simula-

ion study where observations were generated from a chi-squared

istribution. For an in-control process, the observations were gen-

rated using a mean of μo = 2 and a standard deviation of σ o = 4.

ote that, for a chi-squared distribution, the variance is related to

he mean. For the shifted distributions, the following parameter

ombinations of (μ1 , σ 1 ) are used: (3, 6), (4, 8), (5, 10), and (7, 14),

espectively. For a chosen α = 0.01, Table 8 shows the ARL (SERL)

f the AE control chart, with the “look-back” parameter r being 2,

, 5, and 10, and also the OOC ARL (SERL) values of the EWMA

ontrol chart with the constant smoothing factor w being equal to

.1, 0.3, 0.5, 0.7, and 0.99, respectively, using 10 0 0 simulations for

ach parameter combination. It is observed from Table 8 , based on

OC ARLs, the dominance of the AE control chart over the EWMA

ontrol chart. 
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