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Likelihood ratios (LRs) are used to characterize the efficiency of diagnostic tests. In this paper, we use the
classical weighted least squares (CWLS) test procedure, which was originally used for testing the homo-
geneity of relative risks, for comparing the LRs of two or more binary diagnostic tests. We compare
the performance of this method with the relative diagnostic likelihood ratio (rDLR) method and the
diagnostic likelihood ratio regression (DLRReg) approach in terms of size and power, and we observe
that the performances of CWLS and rDLR are the same when used to compare two diagnostic tests, while
DLRReg method has higher type I error rates and powers. We also examine the performances of the CWLS
and DLRReg methods for comparing three diagnostic tests in various sample size and prevalence combina-
tions. On the basis of Monte Carlo simulations, we conclude that all of the tests are generally conservative
and have low power, especially in settings of small sample size and low prevalence.

Keywords: binary diagnostic tests; comparing likelihood ratios; classical weighted least squares; relative
diagnostic likelihood ratio; diagnostic likelihood ratio regression, type I error; statistical power; statistical
simulation

AMS Subject Classification: 62P10; 62F03; 92B15; 92C50; 37M05

1. Introduction

In many clinical studies, researchers compare two or more diagnostic procedures or tests that
are used to indicate the presence or absence of a particular disease, in a situation where the true
disease status is known. A traditional comparison of the two competing binary diagnostic tests
considers the comparison of sensitivities and specificities of each test, whether separately or in
summary [1]. Several methods have been proposed for comparing the sensitivities, specificities,
predictive values, the area under the receiver operator characteristic (ROC) curves, and Youden’s
indices of the tests, both in paired and unpaired study designs [2,3]. The use of positive and
negative likelihood ratios (LRs) rather than sensitivity and specificity as measures of diagnostic
ability has some advantages [4,5]. Biggerstaff [6] emphasized the usefulness of the LRs for
assessing the tests’ relative diagnostic abilities and recommended the use of positive and negative
LRs over the use of sensitivity and specificity for binary test comparison. His paper also presented
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370 N.A. Dolgun et al.

a simple graphical approach for comparing the LRs of two or more diagnostic tests. However, this
approach was somewhat non-inferential and lacked some important aspects of significance testing.
Simel et al. [7] presented confidence intervals for the LRs of binary tests and demonstrated a
sample size estimation procedure for diagnostic test studies based on the desired LR confidence
interval. Leisenring and Pepe [8] proposed the diagnostic likelihood ratio regression (DLRReg)
method for comparing the LRs of binary diagnostic tests in paired/unpaired designs and for
clustered data. Nofuentes and Castillo [9] recently proposed a method for comparing the LRs of
two or more binary diagnostic tests in paired designs. However, the comparison of the LRs in
unpaired data has not been widely studied in the statistical literature. Unpaired designs are common
in clinical studies, especially when the patients are unlikely to have more than one diagnostic test
for some reason (e.g. time limitations, ethical considerations, etc.). Pepe [2] derived empirical
estimates of the relative diagnostic likelihood ratios (rDLRs) using asymptotic distribution theory,
in the specific case when the data are unpaired and independent.

In this paper, we present the use of the classical weighted least squares (CWLS) test procedure
as a tool for comparing LRs of two or more binary diagnostic tests. Throughout this study,
we consider only binary diagnostic tests that are applied to independent groups of patients, each
of which undergoes a different test (unpaired design). Also, we only consider methods which
provide an omnibus comparison of the LRs when the number of diagnostic tests is more than two.
Therefore, available multiple comparison methods are not included in the study. In Section 2,
after giving some basic definitions of LRs and the previous works that are used to compare the
LRs of the diagnostic tests, we describe how the CWLS test procedure can be applied to compare
the LRs. In Section 4, we present the results of a simulation study to compare the size and power
of the CWLS, rDLR, and DLRReg methods when they are used to compare two diagnostic tests.
We also examine performances of the CWLS and DLRReg methods for comparing three diagnostic
tests. In Section 5, we present a brief example to illustrate the test procedures for comparing LRs,
and in Section 6 we discuss our conclusions.

2. General information

2.1. LRs of binary tests

The diagnostic ability of a binary diagnostic test is usually measured in terms of its sensitivity
(Sen), which is the probability of a positive test result when the patient is diseased, and its
specificity (Spe), which is the probability of a negative test result when the patient is non-diseased.
Another way of describing the diagnostic ability of a test is the use of LRs. The positive LR (LR+)
is defined as the ratio of the probability of correctly classifying a diseased patient to the probability
of incorrectly classifying a non-diseased patient, while the negative LR (LR−) is defined as the
ratio of the probability of incorrectly classifying a diseased patient to the probability of correctly
classifying a non-diseased patient (Table 1). For a given diagnostic test, larger values of LR+ and
smaller values of LR− indicate greater diagnostic ability.

The positive and negative LRs algebraically combine sensitivity and specificity, and they pro-
vide measures of test accuracy that are directly related to the predictive values of a test. Unlike
predictive values, they are functionally independent of the disease prevalence in the population.
These properties of LRs make them a more appropriate means of comparing binary diagnostic tests.

Biggerstaff [6] presented an ROC curve-based graph in which two or more LRs are compared
according to the four regions defined. His method was somewhat non-inferential and lacked
some important aspects of significance testing, since his comparison was based only on the
magnitudes of LRs. He also recommended the computation of confidence intervals for the LRs
and incorporation of these into the graphic to provide a more formal inference.
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Journal of Statistical Computation & Simulation 371

Table 1. 2 × 2 Contingency tables of disease status and test result for k competing binary diagnostic tests.a

First test Disease status kth test Disease status

Test result D+ D− . . . Test result D+ D−
T + a1 b1 . . . T + ak bk

T − c1 d1 . . . T − ck dk

Total n1(D
+) n1(D

−) . . . Total nk(D
+) nk(D

−)

Ŝen1 = a1/n1(D
+) . . . Ŝenk = ak/nk(D

+)

Ŝpe1 = d1/n1(D
−) . . . Ŝpek = dk/nk(D

−)

L̂R
+
1 = Ŝen1/(1 − Ŝpe1) . . . L̂R

+
1 = Ŝenk/(1 − Ŝpek)

L̂R
−
1 = (1 − Ŝen1)/Ŝpe1 . . . L̂R

−
k = (1 − Ŝenk)/Ŝpek

aD+, diseased population; D−, non-diseased population; T +, positive test result; T −, negative test result.

2.2. The rDLR

Let us consider two binary diagnostic tests applied to two different groups of patients, where
ak is the number of true positives, dk is the number of true negatives, bk is the number of false
positives, and ck is the number of false negatives for k = 1, 2 tests. The sensitivity of the kth test
is defined as Ŝenk = ak/nk(D

+) where nk(D
+) = ak + ck is the number of patients with disease.

The specificity of the kth test is defined as Ŝpek = dk/nk(D
−) where nk(D

−) = bk + dk is the
number of patients without disease. Also, the positive and negative LRs are L̂R

+
k = Ŝenk/(1 −

Ŝpek) and L̂R
−
k = (1 − Ŝenk)/Ŝpek . Pepe [2] defined the ‘rDLR’ as the ratio of the LRs of two

competing diagnostic tests. Taking the first test as a reference, the positive rDLR (̂rDLR
+

) was

defined as ̂rDLR
+ = L̂R

+
2 /L̂R

+
1 , and the negative rDLR was analogously defined as ̂rDLR

− =
L̂R

−
2 /L̂R

−
1 . Pepe [2] showed that under the null hypothesis (H0 : rDLR+ = 1 for positive rDLR

and H0 : rDLR− = 1 for negative rDLR) and in large samples, log(̂rDLR
+
) and log(̂rDLR

−
) are

normally distributed with mean 0 and variances

v̂ar(log(̂rDLR
+
)) = 1 − Ŝen1

n1(D+)Ŝen1
+ Ŝpe1

n1(D−)(1 − Ŝpe1)
+ 1 − Ŝen2

n2(D+)Ŝen2
+ Ŝpe2

n2(D−)(1 − Ŝpe2)

and

v̂ar(log(̂rDLR
−
)) = Ŝen1

n1(D+)(1 − Ŝen1)
+ 1 − Ŝpe1

n1(D−)(Ŝpe1)
+ Ŝen2

n2(D+)(1 − Ŝen2)

+ 1 − Ŝpe2

n2(D−)(Ŝpe2)
,

respectively. Thus, under H0, the test statistic z = log(̂rDLR)/

√
v̂ar(log(̂rDLR)) follows a stan-

dard normal distribution. In this method, LRs of two diagnostic tests are compared using the

z test statistic such as, if log(̂rDLR
+
) is significantly different from ‘0’ then L̂R

+
2 is statistically

different from L̂R
+
1 . However, in order to apply this approach to compare more than two diag-

nostic procedures, one requires an adjustment due to multiple testing. In such situations, the use
of omnibus hypothesis testing should be considered.
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372 N.A. Dolgun et al.

2.3. The DLRReg

Leisenring and Pepe [8] proposed a regression method which allows for direct assessment of
covariate effects on LRs for binary diagnostic tests. With this approach one can easily compare
different diagnostic tests and determine how the diagnostic accuracy (in terms of LRs) varies
with different patient or environmental characteristics. The DLRReg models for DLR+ with p

covariates and for DLR− with q covariates are

ln(DLR+(X1)) = α0 + α1X11 + · · · + αpX1p,

ln(DLR−(X2)) = β0 + β1X21 + · · · + βqX2q,

where αs and X1 = (X11, . . . , X1p) are parameters and matrix of covariates associated with DLR+
and βs and X2 = (X21, . . . , X2q) are associated with DLR−. In order to compare the LRs of two
tests, the model can be rewritten as

ln(DLR+(X)) = α0 + α1X,

ln(DLR−(X)) = β0 + β1X,

where X is the dummy variable for comparing one test to another. The model also can be extended
to compare more than two tests by simply adding extra dummy variables to the model. Also, the
quantities exp(α1) and exp(β1) give the estimates of rDLR+ and rDLR−, respectively.

The standard LR test statistic −2(Lnull − Lfull), where Lfull is the log-likelihood for the full
model (which includes all dummy variables for k ≥ 2 tests comparison) and Lnull is the log-
likelihood of the null model (which includes only a constant term), can be used as an omnibus
test of equality of the LRs. The resulting test statistic is compared with the corresponding critical
chi-square value with degrees of freedom (df) df = dffull − dfnull. Further details of estimation
and applications can be found in Leisenring and Pepe [8].

It is also important to note that in DLRReg method, there is only one test statistic for negative
and positive LR comparison. To be more specific, since the DLRReg model simultaneously models
the effects on the positive and negative LRs, we get only one LR test statistic which corresponds
to both positive and negative LR comparison. As a result of this, the omnibus DLRReg method
does not clearly indicate whether the positive or negative LRs of the diagnostic tests differ from
each other.

2.4. The CWLS test procedure

Let us consider k binary diagnostic tests applied to different groups of patients. Table 1 displays
the frequencies of k test results when applied to k different diseased and non-diseased groups.
We use the subscript i (i = 1, . . . , k) to denote the observed frequencies of the corresponding
diagnostic test results.

When comparing the LRs of k binary diagnostic tests, we consider the null hypothesis
H0 : LR1 = LR2 = · · · = LRk , where LRi is either LR+

i or LR−
i . Since LR+

i and LR−
i are the

ratios of two independent binomial probabilities (sensitivity and specificity), they are algebraically
identical to relative risk ratios [7]. Simel et al. [7] presented an approximate confidence interval
formula for positive and negative LRs using a Taylor series approximation and the logarithms of
the LRs. Using these results, the CWLS test procedure [10,11], which was originally used for
testing the homogeneity of relative risks, can be easily applied for testing the null hypothesis
H0 : LR1 = LR2 = · · · = LRk .

The CWLS test statistic uses a weighted average of the logarithms of the L̂Rs, say L̂i

(L̂+
i = log(L̂R

+
i ) for the log-positive LR and L̂−

i = log(L̂R
−
i ) for the log-negative LR), where the
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weights (Wi) are the reciprocals of the variances of L̂i (W+
i = 1/v̂ar(L̂+

i ) and W−
i = 1/v̂ar(L̂−

i )).
By applying the delta method [12], it is easily seen that the estimated asymptotic variances of
L̂+

i and L̂−
i are v̂ar(L̂+

i ) = (1 − Ŝeni )/ai + (Ŝpei )/bi and v̂ar(L̂−
i ) = (Ŝeni )/ci + (1 − Ŝpei )/di ,

respectively.
Under H0 : LR1 = LR2 = · · · = LRk , L̂is are normally distributed with mean 0 and the

variances given above. Therefore, the quantity χ2
Total = ∑k

i=1 WiL̂
2
i gives the total variance (in

terms of chi-square) in independent k > 2 tables. χ2
Total is partitioned into two components, namely

between tables variance (which is χ2
Homogeneity and is equal to CWLS estimator in our context)

and within tables variance (which is χ2
Association), where χ2

Total = ∑k
i=1 WiL̂

2
i and χ2

Association =
(
∑k

i=1 WiL̂i)
2/

∑k
i=1 Wi . Thus, the CWLS test is equal to the χ2

Homogeneity = χ2
Total − χ2

Association
which is

CWLS =
k∑

i=1

WiL̂
2
i − (

∑k
i=1 WiL̂i)

2∑k
i=1 Wi

(1)

and is tested against the critical chi-square value with degrees of freedom dfTotal − dfAssociation =
k − 1. Under the null hypothesis, the test statistic (1) asymptotically follows the χ2 distribution

Figure 1. Estimated type I errors of CWLS, rDLR, and DLRReg methods for (a) H0 : LR+
1 = LR+

2 and
(b) H0 : LR−

1 = LR−
2 .
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374 N.A. Dolgun et al.

Figure 1. Continued.

with k − 1 degrees of freedom [10,11] when all the observed frequencies in Table 1 are sufficiently
large. Thus, we reject H0 at the significance level α if CWLS > χ2

α,k−1, where χ2
α,k−1 is the upper

100(α)th percentile of the chi-square distribution with k − 1 degrees of freedom. Also, note that
the χ2 test statistic of the CWLS is equal to z2 test statistic of the rDLR when k = 2.

3. Description of the simulation study

In order to evaluate and compare the size (type I error) and power of the CWLS, rDLR and
DLRReg methods, we performed a Monte Carlo simulation. Three factors were considered that
could affect the size and power of the CWLS, rDLR and DLRReg methods, namely, the total
sample size nT

i (where nT
i = ni(D

+) + ni(D
−)), the estimated disease prevalence pri (where

pri = ni(D
+)/nT

i ), and the LRs, LRi , under the null or the alternative hypothesis. We considered
situations in which the estimated disease prevalence is 0.01, 0.10, or 0.25 and the total sample size
is 100, 300, or 500. Also, since the values of LR+

i < 1 and LR−
i > 1 suggest that the diagnostic

tests under consideration are swapping the meanings of ‘positive’ with ‘negative’, we specified
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the values of sensitivity and specificity in the range [0.60–0.95], so that the resulting LRi have
practical meaning. For each combination of nT

i , pri and LRi , i = 1, . . . , k, we generated 10,000
independent sets of cell counts for k 2 × 2 tables. Upon obtaining the LRi from Seni and Spei ,
we generated cell counts ai and di from independent binomial distributions with parameters
(Seni , ni(D

+)) and (Spei , ni(D
−)), respectively. Note that, when one of the cell counts in the

2 × 2 tables equals 0, the resulting estimate of LRi is either 0 or infinity. In such cases, we applied
the commonly used ad hoc adjustment procedure of adding 0.50 to each cell frequency in that
particular table when estimating LRi .

We obtained the estimated size and power for a given test as the percentage of times the test
rejects the null hypothesis when the LRi are held constant or varied, respectively. We simulated a
total of 126 configurations for the size and 261 configurations for the power of the test statistics,
when the number of diagnostic tests is two (k = 2). Furthermore, we examined the performance
of the CWLS and DLRReg approaches when k = 3 with a total of 126 and 315 configurations for
the size and power, respectively. The simulation program is developed in R version 2.9.1 software
by the authors.

Figure 2. Estimated type I errors of CWLS and DLRReg methods for (a) H0 : LR+
1 = LR+

2 = LR+
3 and

H0 : LR−
1 = LR−

2 = LR−
3 .
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376 N.A. Dolgun et al.

Figure 2. Continued.

4. Results

4.1. The estimated type I error

Figure 1(a) and (b) summarizes the estimated type I errors of the CWLS, rDLR, and DLRReg
methods at the significance level 0.05 for the given combinations of total sample size, disease
prevalence, and LRs (positive and negative LR, respectively) when the number of diagnostic tests
is two (k = 2). According to Figure 1, when testing H0 : LR+

1 = LR+
2 and H0 : LR−

1 = LR−
2 ,

we observe that the CWLS and rDLR methods give exactly the same type I error results for
all simulation settings. The DLRReg method, on the other hand, has higher type I error rates
than CWLS and rDLR methods in most situations. All of the test procedures are conservative, in
settings of low prevalence (pri = 0.01) and small sample size (nT

i = 100), and they reach desired
0.05 level only in settings of higher prevalence and larger sample size.

Figure 2(a) and (b) summarizes the estimated type I errors of the CWLS and DLRReg
procedures at the significance level 0.05 for the given combinations of total sample size, dis-
ease prevalence, and LRs (positive and negative LR, respectively) when the number of diagnostic
tests is three (k = 3). The results that can be derived from Figure 2 are similar to those of Figure 1.
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Table 2. The estimated power of CWLS, rDLR, and DLRReg methods, for testing hypotheses H0 : LR+
1 = LR+

2
and H0 : LR−

1 = LR−
2 at 0.05 significance level, for given combinations for LRi , pri , and nT

i (abbreviated
version).

H0 : LR+
1 = LR+

2 H0 : LR−
1 = LR−

2 Omnibus

LR+
1 LR+

2 LR−
1 LR−

2 pri nT
i CWLS rDLR CWLS rDLR DLRReg

1.5 2 0.667 0.333 0.01 100 0.0000 0.0000 0.0000 0.0000 0.0195
300 0.0000 0.0000 0.0000 0.0000 0.0332
500 0.0000 0.0000 0.0000 0.0000 0.0683

0.1 100 0.0857 0.0856 0.0279 0.0279 0.1297
300 0.2832 0.2832 0.3389 0.3389 0.3189
500 0.4426 0.4426 0.5597 0.5597 0.4946

0.25 100 0.1701 0.1701 0.2556 0.2555 0.2692
300 0.4395 0.4395 0.7221 0.7221 0.6818
500 0.6484 0.6484 0.9108 0.9108 0.8858

2 3 0.333 0.143 0.01 100 0.0000 0.0000 0.0000 0.0000 0.1887
300 0.0033 0.0033 0.0000 0.0000 0.5813
500 0.0988 0.0988 0.0000 0.0000 0.8305

0.1 100 0.2616 0.2616 0.0033 0.0033 0.2255
300 0.7183 0.7183 0.1594 0.1594 0.6669
500 0.9037 0.9037 0.3544 0.3544 0.8844

0.25 100 0.3511 0.3511 0.0995 0.0992 0.2876
300 0.7910 0.7910 0.5334 0.5334 0.7181
500 0.9488 0.9488 0.7649 0.7649 0.9160

2 4 0.571 0.25 0.01 100 0.0010 0.0010 0.0000 0.0000 0.2406
300 0.0251 0.0251 0.0000 0.0000 0.7157
500 0.2568 0.2567 0.0000 0.0000 0.9197

0.1 100 0.3895 0.3895 0.0622 0.0622 0.3495
300 0.8605 0.8605 0.4843 0.4843 0.8224
500 0.9795 0.9795 0.7305 0.7305 0.9693

0.25 100 0.5129 0.5129 0.3940 0.3940 0.4665
300 0.9449 0.9449 0.8818 0.8818 0.9207
500 0.9948 0.9948 0.9819 0.9819 0.9915

1.5 4.5 0.667 0.125 0.01 100 0.0082 0.0082 0.0000 0.0000 0.7718
300 0.4496 0.4496 0.0000 0.0000 0.9986
500 0.8617 0.8617 0.0072 0.0072 1.0000

0.1 100 0.8822 0.8822 0.1774 0.1774 0.8588
300 0.9998 0.9998 0.9097 0.9097 0.9999
500 1.0000 1.0000 0.9925 0.9925 0.9995

0.25 100 0.9489 0.9489 0.8226 0.8226 0.9237
300 0.9999 0.9999 1.0000 1.0000 0.9997
500 1.0000 1.0000 1.0000 1.0000 1.0000

2 6 0.333 0.444 0.01 100 0.3382 0.3382 0.0000 0.0000 0.9977
300 0.5886 0.5886 0.0000 0.0000 0.9999
500 0.6670 0.6670 0.0011 0.0011 1.0000

0.1 100 0.6847 0.6847 0.0034 0.0034 0.9959
300 0.9815 0.9815 0.0572 0.0572 1.0000
500 0.9995 0.9995 0.1053 0.1052 1.0000

0.25 100 0.7815 0.7815 0.0445 0.0445 0.9939
300 0.9977 0.9977 0.1525 0.1525 1.0000
500 1.0000 1.0000 0.2529 0.2529 1.0000
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378 N.A. Dolgun et al.

Table 3. The estimated power of CWLS and DLRReg methods for testing hypotheses H0 : LR+
1 = LR+

2 = LR+
3

and H0 : LR−
1 = LR−

2 = LR−
3 at 0.05 significance level for given combinations of LRi , pri , and nT

i (abbreviated
version).

Power of
Power of CWLS DLRReg

LR+
1 LR+

2 LR+
3 LR−

1 LR−
2 LR−

3 pri nT
i H0 : LR+

1 = LR+
2 = LR+

3 H0 : LR−
1 = LR−

2 = LR−
3 Omnibus

1.5 2 2.5 0.667 0.333 0.357 0.01 100 0.0000 0.0000 0.1548
300 0.0012 0.0000 0.6196
500 0.0711 0.0054 0.8778

0.1 100 0.1660 0.0583 0.2910
300 0.5439 0.3466 0.7668
500 0.7916 0.5838 0.9474

0.25 100 0.2926 0.2621 0.3844
300 0.7618 0.7614 0.8833
500 0.9410 0.9397 0.9862

2 4 6 0.333 0.25 0.118 0.01 100 0.0169 0.0000 0.9207
300 0.6550 0.0002 0.9995
500 0.9416 0.0060 0.9998

0.1 100 0.8956 0.0161 0.9193
300 1.0000 0.1596 1.0000
500 1.0000 0.3953 1.0000

0.25 100 0.9127 0.1089 0.8942
300 1.0000 0.6164 1.0000
500 1.0000 0.8654 1.0000

2 3 3 0.333 0.143 0.143 0.01 100 0.0000 0.0000 0.1476
300 0.0002 0.0000 0.5648
500 0.0181 0.0026 0.8547

0.1 100 0.2243 0.0089 0.2017
300 0.7519 0.1724 0.7048
500 0.9376 0.3656 0.9163

0.25 100 0.3388 0.1156 0.2805
300 0.8288 0.5620 0.7625
500 0.9647 0.7900 0.9365

6 6 8 0.118 0.118 0.222 0.01 100 0.0008 0.0000 0.0561
300 0.0294 0.0000 0.2679
500 0.0971 0.0002 0.5095

0.1 100 0.0700 0.0026 0.1151
300 0.1696 0.0722 0.4498
500 0.2760 0.1854 0.6964

0.25 100 0.0601 0.0490 0.2053
300 0.1629 0.3285 0.5755
500 0.2532 0.5506 0.8199

3 6 6 0.143 0.118 0.118 0.01 100 0.0046 0.0000 0.5462
300 0.3774 0.0000 0.9877
500 0.8555 0.0002 0.9999

0.1 100 0.5923 0.0003 0.5494
300 0.9824 0.0117 0.9865
500 0.9996 0.0271 1.0000

0.25 100 0.5857 0.0095 0.5192
300 0.9792 0.0464 0.9662
500 0.9994 0.0602 0.9988
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When testing H0 : LR+
1 = LR+

2 = LR+
3 and H0 : LR−

1 = LR−
2 = LR−

3 , the CWLS and DLRReg
test procedures are generally conservative, especially in settings of low prevalence (pri = 0.01)
and small sample size (nT

i = 100), whereas the DLRReg method has higher type I error rates in
most settings. Both tests reach the desired 0.05 level in settings where the prevalence is high and
the sample size is large.

4.2. The estimated power

Table 2 summarizes a part of the results obtained for the power of the CWLS, rDLR, and DLRReg
methods when testing hypotheses H0 : LR+

1 = LR+
2 and H0 : LR−

1 = LR−
2 at the significance level

0.05 for given combinations of LRi , pri , and nT
i . We observe that the power of CWLS and rDLR

methods are the same for all simulation settings when k = 2. On the other hand, the DLRReg
method is more powerful in most of the situations. Moreover, all test procedures have low power,
especially in settings of small sample size (nT

i = 100) and low prevalence (pri = 0.01), and the
powers increase as the total sample size and prevalence increases.

Table 3 summarizes a part of the results obtained for the power of the CWLS and DLRReg
methods when testing hypotheses H0 : LR+

1 = LR+
2 = LR+

3 and H0 : LR−
1 = LR−

2 = LR−
3 at the

significance level 0.05 for given combinations of LRi , pri , and nT
i . The results that can be derived

from Table 3 are similar to those of Table 2. The CWLS and DLRReg methods have low power,
especially in settings of small sample size (nT

i = 100) and low prevalence (pri = 0.01), and the
powers increase as the total sample size and prevalence increases. Again the DLRReg method has
higher power values in most of the situations.

5. An example

We present a brief example to illustrate the CWLS, rDLR, and DLRReg test procedures for
comparing LRs. Two different studies of enzyme-linked immunosorbent assay (ELISA) in the
diagnosis of Lyme disease are held, of which the sensitivity and specificity are reported as 40%
(23/57), 94% (130/139) [13] for the first study, and 78% (45/58), 89% (101/113) [14] for
the second study, respectively. The LRs for the first study are L̂R

+
1 = 6.23 and L̂R

−
1 = 0.64,

and, for the second study, they are L̂R
+
2 = 7.31 and L̂R

−
2 = 0.25. The CWLS test statistics for

H0 : LR+
1 = LR+

2 and H0 : LR−
1 = LR−

2 are 0.121 and 11.92, respectively. Also, according to

the rDLR method, log(̂rDLR
+
) = −0.16 and log(̂rDLR

−
) = 0.93 with the estimated variances

v̂ar(log(̂rDLR
+
)) = 0.21 and v̂ar(log(̂rDLR

−
)) = 0.07, yielding the z test statistics as −0.35 and

3.45. Thus, for both tests, we reject H0 : LR−
1 = LR−

2 at the level of α = 0.05, but we cannot reject
H0 : LR+

1 = LR+
2 . In order to get the estimates in the DLRReg method, we used a STATA do-file

named lrreg.ado which is written by Leisenring and Longton [15]. According to the DLRReg
model, the estimates are α̂0 = 1.99, α̂1 = −0.16, β̂0 = −1.38, and β̂1 = 0.93, where the log-
likelihood of the null model is Lnull = −150.066 and the log-likelihood for the full model is
Lfull = −140.889. The LR test statistic yields −2(Lnull − Lfull) = 18.35. When the resulting test
statistic is compared with the corresponding critical chi-square value with df = 2, we conclude
that at least one coefficient (̂α1 or β̂1) is statistically significant.

6. Discussion

In this study, by using the fact that the LRs are identical to relative risks, we presented the use
of the CWLS test procedure, which was originally used for testing the homogeneity of relative
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risks, for comparing the LRs of two or more binary diagnostic tests. We examined the size and
power of the CWLS, rDLR, and DLRReg methods and observed that, CWLS and rDLR methods’
performances were the same in all settings of the simulation study when k = 2. All of the tests
were generally conservative and had low power especially in settings of small sample size and
low prevalence. Also, the DLRReg method had higher type I errors and higher powers in most of
the situations.

We also examined the performances of the CWLS and DLRReg methods for comparing three
diagnostic tests in various sample size and prevalence combinations, and the results were similar
to those for k = 2. They were generally conservative and had low power especially in settings
of small sample size and low prevalence. This was not surprising for the CWLS test procedure
because it does not perform well in small sample size and sparse data settings [16,17] since it
uses the asymptotic distribution theory. The DLRReg method had higher type I errors and higher
powers than the CWLS method in most of the situations.

The simulations were based on a cohort design, and it is clear that no test procedure provided
satisfactory power, especially in settings of small sample size and low prevalence. In such situa-
tions, one would typically follow a case-control design. In a case control study, note that ni(D

+)

and ni(D
−) are fixed by design and the relative frequency of diseased patients is usually much

higher than in the population from which the cases and controls are drawn, at least if the disease
prevalence is relatively low. The inferences for the LRs are exactly the same in a case control
study, and the performance of the CWLS test procedure depends only on the magnitude of ni(D

+)

and ni(D
−).

LRs tell us two different characteristics of the tests’ performance, namely the ability of the
tests to rule in and rule out a disease. For that reason, the LR+ and LR− are tested separately
with the CWLS test procedure throughout the paper. However, in some cases, one can think of
testing the LR+ and LR− overall instead of testing them separately. In such cases, the DLR-
Reg method can be used to test LR+ and LR− in an omnibus manner and this method will be
advantageous than the CWLS and rDLR methods (which test the hypotheses separately and allow
the type I error rate to inflate), since it controls the type I error rate at the desired level, like
other omnibus hypothesis testing procedures such as ANOVA. Also, one should be aware that
the large sample covariance of log(L̂R

+
) and log(L̂R

−
) depends on sample sizes; it is simply

−(1/ni(D
+) + 1/ni(D

−)) [2]. Another way of overall testing of LRs could be by using the Odds
Ratio (ORi = LR+

i /LR−
i ), which algebraically combines the positive and negative LRs [18].

The CWLS test procedure is also valid for comparing the odds ratios of two or more binary
diagnostic tests.

Another use of the CWLS test procedure is in meta-analytic studies to compare the perfor-
mance of a diagnostic test that is applied on different populations, as given in the example, or
subgroups of patients, for evaluating the spectrum effect [19]. The CWLS test procedure also
has some advantages that make the procedure very flexible. First, it allows us to compare more
than two diagnostic tests. Second, if the test statistic is significant, in the next step, one could
partition the chi-square into appropriate components in order to identify which diagnostic tests
have significantly different LRs.

In summary, we conclude that the CWLS test procedure can be used as a generalization of the
rDLR method when k > 2 and that it merits consideration as a method for comparing more than
two LRs of diagnostic tests in settings of large sample size and high prevalence.Also, the DLRReg
method is a very useful tool to determine how the diagnostic accuracy (in terms of LRs) varies
with different patient or environmental characteristics and to compare different diagnostic tests.
Moreover, when one wants to test both positive and negative LRs simultaneously, this method is
more advantageous than the CWLS and rDLR methods, since it controls the type I error rate at
the desired level.
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