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REVIEW ARTICLE

Abstract: In response to the widespread abuse and misinterpreta-
tion of significance tests of null hypotheses, some editors and authors 
have strongly discouraged P values. However, null P values still 
thrive in most journals and are routinely misinterpreted as probabili-
ties of a “chance finding” or of the null, when they are no such thing. 
This misuse may be lessened by recognizing correct Bayesian inter-
pretations. For example, under weak priors, 95% confidence intervals 
approximate 95% posterior probability intervals, one-sided P values 
approximate directional posterior probabilities, and point estimates 
approximate posterior medians. Furthermore, under certain condi-
tions, a one-sided P value for a prior median provides an approximate 
lower bound on the posterior probability that the point estimate is on 
the wrong side of that median. More generally, P values can be incor-
porated into a modern analysis framework that emphasizes measure-
ment of fit, distance, and posterior probability in place of “statistical 
significance” and accept/reject decisions.

(Epidemiology 2013;24: 62–68)

P values for null hypotheses of no association or no effect 
(null P values, which we denote by P0) still thrive in most 

of the literature. Despite being data frequencies under a hypo-
thetical sampling model, they are routinely misinterpreted as 
probabilities of a “chance finding” or of the null, which are 
Bayesian probabilities. To quote one biostatistics textbook: 
“The P value is the probability of being wrong when assert-
ing that a true difference exists.”1 Similar misinterpretations 
remain in guides for researchers. For example, Cordova2 states 
the null P value “represents the likelihood that groups differ 
after a treatment due to chance.”

It is thus unsurprising that many call for improved educa-
tion regarding P values.3–11 Others discourage specific uses of 
P values12–15 or, occasionally, all uses (as in the Epidemiology 

instructions for authors: “We strongly discourage the use of P 
values and language referring to statistical significance . . .”),  
regarding them as a confounded mix of estimate size and 
precision.16,17

Many advocates of educational reform specifically decry 
use of P values in Neyman-Pearson hypothesis testing, in which 
results are placed in bins labeled “association” and “no associa-
tion” based on whether the P value is below or above a prespec-
ified alpha level (the maximum tolerable type-I or false-positive 
error probability), usually 0.05. Neyman-Pearson testing has 
often been criticized as groundless and arbitrary9,17–20 and even 
mindless3,5—aptly in our view. Unfortunately, Neyman-Pearson 
testing has also been called “significance testing,” and the alpha 
level has been called the “significance level” of the test. This 
secondary terminology has fed the oft-lamented confusion of 
Neyman-Pearson testing with the significance-testing approach 
of Fisher.21,22 In the latter approach, significance level refers to 
the P value itself, which is treated as a continuous measure of 
evidence against the tested hypothesis, with lower P values cor-
responding to greater evidence.6,9,23–26

This article is in the reform tradition. We first consider 
some arguments against P values. We then review ways in 
which P values and other ordinary frequentist statistics can 
be given correct Bayesian interpretations. We focus on how a 
one-sided P value can provide a lower bound on the posterior 
probability that the point estimate is on the wrong side of the 
prior median (the prior odds that the true parameter is above 
vs. below this median is 50:50).27 In particular, when one sees 
a two-sided null P value P0  for a difference or log ratio mea-
sure, one can immediately say that if one starts with a normal 
or uniform prior centered on the null, the posterior probability 
that the point estimate is in the wrong direction (ie, on the 
wrong side of the null) is no less than P0 /2.

ARE P VALUES SUPERFLUOUS GIVEN 
CONFIDENCE INTERVALS?

It is sometimes said that confidence intervals render  
P values redundant because the two give “equivalent informa-
tion,” with no indication of what “equivalent” means. True, 
for any parameter value, its P value is under 0.05 if and only 
if the parameter value is outside the 95% confidence interval 
computed by the same method. But this equivalence argument 
seems to restore 0.05-level testing to the primacy it retains in 
most medical journals.28
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One can compute a P value from a confidence inter-
val; therefore, the abstract (mathematical) information in a P 
value is indeed redundant given the confidence interval. But, 
unless the P value is 1, we can compute a confidence interval 
from the point estimate and P value, rendering the confidence 
interval redundant in the same technical sense. Furthermore, 
just as the estimate and P value do not convey a confidence 
interval well, a confidence interval does not convey desired 
P values well.10 For instance, we have found colleagues who 
believe that if a set of risk ratios (RRs) all have lower con-
fidence limits above 1, the RR with the highest lower limit 
must have the smallest null P value, P0, especially if that RR 
has the largest point estimate. Others seem to think that if the 
lower limits are the same, the null P values are the same, or the 
one with the higher point estimate has the lower null P value. 
These beliefs are often the opposite of reality; for example, 
if the estimate RR�  is 1.6 with lower limit 1.2, P0  is 0.001, 
whereas for RR� = 4 8.  with lower limit 1.3, P0  is 0.020.

Equivalence and redundancy are thus not good argu-
ments for suppressing P values as supplements to point and 
interval estimates. There are, however, good psychological 
arguments for that suppression. They are based on the observa-
tion that null P values are almost always interpreted badly, even 
by statisticians. For example, a small P0  is routinely taken as 
refuting the null and a large P0  is routinely taken as supporting 
the null; however, both interpretations are usually far from cor-
rect.8,11–13,25,26,28–37 We will explain how these problems could 
be avoided if P values were interpreted as distance measures 
and posterior probabilities rather than as tests of hypotheses.

Assumptions and Notation
Throughout, we assume that an analysis goal is inference 

about the true value θt  of a parameter or some simple function 
of θt  (eg, its antilog) in an analysis using standard models and 
approximations. Usually, θt  is a coefficient in a linear, logistic, 
Poisson, or proportional hazards regression and analysis and 
thus represents a difference or log ratio; however, when is a prod-
uct-term coefficient, it measures variation (heterogeneity) in a 
difference or log ratio. θ�  will denote one of the usual efficient 
estimators of θt  (eg, least-squares, maximum likelihood), with 
σ�  its estimated standard error. θ  will denote the parameter name 
or a particular value for the parameter, possibly incorrect, but 
of special contextual interest. In almost all software and reports 
of P values, the null value 0 for θ  is automatically taken to be 
of key interest, but other values may be as or more important to 
analyze. For example, in certain legal situations, a risk or rate 
ratio RR of 2 translates to a 50% lower bound for a causation 
probability,38 which leads to examining θ = = ( )ln ln 2( )RR .

CORRECT FREQUENCY INTERPRETATIONS OF P 
VALUES AND CONFIDENCE INTERVALS
We illustrate concepts using familiar Wald methods 

derived from the Z score θ θ σ� �−( ) /  and its absolute value 
| | /θ θ σ� �−  which is the distance in standard errors from the 
observation θ�  to the possibility θ . The two-sided P value Pθ  

for θ  is, then, the relative frequency (over study repetitions) 
that the absolute Z statistic θ θ σ� �− /  would exceed its observed 
value if indeed θ θt =  and all other assumptions used to com-
pute this frequency are correct. In particular, P0 is the usual 
two-sided null P value for the hypothesis θt = 0, derived from  
θ σ� �/ , and Pln(2) is the two-sided P value for θt = ( ) ln 2 , derived 

from θ σ� �− ( )ln 2 / . The usual 95% confidence interval with 

limits θ σ� ∓ �1 96.  can be derived by solving θ θ σ� �− =/ 1 96.  for 

θ  and thus can be defined as all θ  for which Pθ ≥ 0 0. 5. Con-
versely, given a 95% confidence interval confidence interval 
( , )θ θ , we can deduce θ θ θ� = +( ) / 2, σ θ θ� = −( ) / .3 92  and 
thus compute a Z score and P value for any θ  of interest.

P values such as Pθ  are often described as measures 
of goodness of fit, distance, consistency, or compatibility 
between the observed data and the data-generating model, or 
between a parameter estimate θ�  and a hypothesized param-
eter constraint such as θ θt =  or θ θt ≤ .23,39 Pθ  is the prob-
ability transform of the distance from θ  to θ� ; in particular, 
P0  is the transformed distance of θ�  to the null. A small Pθ  
is taken to indicate a problem with the assumptions used for 
its computation (eg, perhaps θ θt ≠ , or there is some uncon-
trolled validity problem, or both).21,22 This interpretation is 
popular among those seeking to avoid both hypothesis testing 
and Bayesian interpretations of P values.26

To illustrate, consider a disease indicator Y 1= ,0  and 
a logistic regression model for disease frequency given two 
binary factors X and Z,

	 Pr Y 1 X x z expit x z( | , )= = = + +( )Z = α β γ 	 (1)

This model asserts that only three parameters α β γ, ,( )  are 
needed to perfectly specify (or encode) the disease frequen-
cies at every combination of X 1= ,0  and Z 1= ,0. There is 
rarely any justification for this assumption; however, it is rou-
tine and usually unmentioned, or else unquestioned if the P 
value for the test of model fit is “big enough” (usually mean-
ing at least 0.05 or 0.10).

Consider the null P value P0  for θt = 0  when θ  is the 
product-term coefficient in

	 Pr Y 1 X x Z z expit x z xz( | , )= = = = + + +( )α β γ θ 	 (2)

θt = 0  yields model 1 and translates into constancy of the 
odds ratio relating X to Y as Z varies. P0  is a measure of

(a). � The distance from 0 to θ� ,
(b). � The goodness of fit of model 1 when taking the more gen-

eral model 2 as the referent, and
(c). � The distance from the fitted model 1 to the fitted model 2 

(where the fitted models are the above equations with the 
parameters replaced by their estimates).

For comparison, the non-null value θt = ( )ln 2  translates 
into a doubling of the odds ratio relating X to Y when we move 
from Z = 0  to Z 1=  and corresponds to the model:
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	 Pr Y 1 X x  Z z expit x z ln 2 xz( | , ) ( )= = = = + + + ( )α β γ 	 (3)

Pln(2) is a measure of

(a). � The distance from ln(2) to θ� ,
(b). � The goodness of fit of model 3 when taking model 2 as 

the referent, and
(c). � The distance from the fitted model 3 to the fitted model 2.

Finally, the 95% confidence interval for θt  is a mea-
sure of the spread of the four-dimensional likelihood function 
derived from the data and model 2 along the θ  dimension. 
Consequently, confidence interval width is sometimes pro-
moted as a measure of study precision in estimating θt.

12 This 
interpretation, however, assumes model 2; using other models, 
we would expect all the confidence intervals and P values to 
change, demonstrating that statistical concepts of precision, 
fit, and distance are relative to a model rather than absolute 
properties of a study.

CORRECT BAYESIAN INTERPRETATIONS OF P 
VALUES AND CONFIDENCE INTERVALS
Typical misinterpretations of P values treat them as 

Bayesian posterior probabilities. For example, one com-
mon but extreme mistake interprets Pθ  as the probability 
that θ θt = ; however, these two probabilities are usually far 
apart.29,30 Such misinterpretations may be recognized and 
avoided by examining situations in which Pθ  is indeed a prob-
ability (bet) about the true value θt . For a review of basic 
Bayesian ideas such as prior and posterior probabilities, see 
for example, Greenland.40–42

Extreme-Prior Interpretation
Under maximum-likelihood analyses, the most direct 

Bayesian interpretations of P values and confidence intervals 
arise when only two extreme kinds of prior distributions are 
allowed: point priors, which express 100% certainty that a 
parameter is a given value; and equal-odds (uniform) priors on 
the usual normalizing (“natural parameter”) scale for setting 
confidence intervals (eg, typically the log scale for ratio param-
eters, and the coefficient scale in multiplicative models). If τ  
denotes the prior standard deviation for θ , point priors cor-
respond to τ = 0  and equal-odds priors correspond to τ = ∞.

A parameter θ  with a point prior asserting it must be 
zero is usually inapparent (implicit) in the model because it is 
replaced in the model by zero and so disappears from sight. 
Model 1 is an example in which θ  is invisible, yet the model 
is a special case of model 2 with the added constraint θt = 0,  
which in Bayesian terms corresponds to imposing the point 
prior Pr 1( )θt = =0  for θ  and placing equal odds on all possi-
ble combinations of α, β, and γ. Similarly, model 3 corresponds 
to imposing the point prior Pr ln 2 1{ }θt = ( ) =  and placing equal 
odds on all possible combinations of α , β , and γ , but θ  now 
remains visible in the model because it is nonzero.

If instead we assume only the more general model 2 and 
place equal prior odds on all combinations of α , β , γ , and θ , 
we obtain the following interpretations of frequentist statistics 
as approximate Bayesian posterior statistics:

(a). � Pθ  is the posterior probability that θ�  is closer to θ  than to 
the truth θt  (ie, Pθ  is the probability that θ θ θ θ� �− > −t ).

(b). � Pθ / 2  is the posterior probability that θ�  is on the wrong 
side of θ  relative to the truth θt ; in particular, P0 /2  is 
the probability that the observed association is in the 
wrong direction. Hence, if θ θ� > , Pθ / 2  is the posterior 
probability that θ θt < ; if θ θ� < , Pθ / 2  is the probability 
that θ θt > ; in particular, if θ�  is positive, P0 / 2  is the 
probability that θt  is negative; if θ�  is negative, P0 / 2  is 
the probability that θt  is positive.

(c). � The 95% confidence interval θ θ,( )  for θ  becomes a 
95% posterior probability interval for θ ; hence, under 
model 2 and the prior, the probability that θ θ θ≤ ≤t  is 
0.95 (parallel interpretations extend to other confidence 
levels).

(d). � θ�  is the posterior median (the odds of θt being above vs. 
below θ�  are equal).

Thus, the equal-odds prior renders correct the usual misinter-
pretation of confidence intervals and provides Bayesian inter-
pretations of P values.

As an example, suppose .θ� = 1 40  and .σ� = 0 06 . Then, 
the following Bayesian posterior probability statements fol-
low from model 2, the data, and an equal-odds prior:

(i). � | | / . / . .θ σ� �− = = 1 4 6 2 330 0 0 0 , giving P0 0 0=  2.  as 
the probability that 1.40 is closer to 0 than to θt  and 
P0 0 0/ .2 1=  as the probability that θt  is negative or that 
e tθ < 1.

(ii).   �| | / . . / . .θ σ� �− ( ) = − =ln 2 1 4 693 6 1 180 0 0 0 , giving Pln(2) = 
0.24 as the probability that 1.40 is closer to ln 2( )  than to 
θt , and Pln(2) / 2 = 0.12 as the probability that θt < ( )ln 2  
or that e tθ < 2.

(iii). � θ� ∓1 96. σ� ∓= ( ) =1 4 1 96 6 22. . . .0 0 0 0 , 2.58 has 95% 
probability of containing θt , so that the probability of 
e e et0. .. .22 2 581 25 13 2= < < =θ  is 95%.

(iv). � The odds of θt  being above versus below 1.40 is 1, 
meaning equal probabilities that e etθ < =1 4 4 6. .0 0  and 
e tθ > 4 6.0 .

Taking P0 / 2  as the posterior probability that the 
observed association is in the wrong direction is found among 
pre-Fisherian writers, including Gossett, the inventor of the t 
test,4,34,43 and follows from Bayesian 2 × 2 table results pub-
lished in 1877.44,45 More generally, (a)–(c) follow from taking 
the posterior distribution of the model parameters as propor-
tional to the likelihood function, approximating the marginal 

posterior for θt  with a normal ( , )θ σ� �  distribution (hence like-
lihood-ratio statistics will render a better approximation than 
Z scores).
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Objections to Equal-Odds Priors and Responses
One objection to the equal-odds prior underlying (a)–(c) 

is that it is improper (it has infinite instead of 100% total proba-
bility), which leads to undefined prior probabilities even though 
prior odds are defined. Although some Bayesians defend direct 
use of improper priors,46 one can instead replace the equal-odds 
prior by proper priors that are weak enough to leave properties 
(a)–(c) approximately correct in practice, as is done in “objec-
tive” and “reference” Bayesian methods.47 We will call all these 
priors “weak priors,” whether proper or improper.

A more serious objection is that weak priors are usually 
contextually absurd.40,41 Suppose θt  is a log death-rate ratio 
for an Food and Drug Administration–approved glioma che-
motherapy versus radiation therapy. Then, an equal-odds prior 
says ln 1 1( )0 00− , 0, and ln 1 10 00( ) are all equally credible val-
ues for θt . But ln 1 1( )0 00−  implies complete prevention and is 
disproved by any death with chemotherapy, whereas ln 1 10 00( ) 
implies complete causation and is disproved by any survivor 
of chemotherapy.

One response to these criticisms is to take interpretations 
(a)–(c) as Bayesian measures of the information content of the 
data relative to the model, before prior information about the 
model parameters is added. This approach provides a contrast 
against Bayesian results derived from informative priors and 
is supported by noting that (a)–(c) are precisely the Bayesian 
results one obtains when no prior data are added to the actual 
data.40,41 Reference-Bayes analyses produce similar interpreta-
tions in that they correspond to adding almost no data.

Bounding Results from More Informative Priors
Weak priors are most absurd when all the values of 

θ  being debated (and thus all serious candidates for a prior 
median) are so close to the null that it is difficult to distinguish 
among them or distinguish them from the null.40,41,48,49 Many, 
if not most, modern controversies (eg, long-term nutrient 
effects and drug side effects) involve debates within ranges 
like ¼ < <RR 4. In these settings, confidence intervals (and 
thus posterior intervals under weak priors) typically cover a 
substantial part of the range under debate, and no one would 
take seriously claims of (say) RR > 100.

Even without controversy, the effort and discomfort of 
specifying detailed priors is daunting. Not only must we ratio-
nalize all choices to ourselves and the reader, but we may have 
to allow for the fact that readers may have different priors from 
ours. Anticipating the full spectrum of these differences with 
sensitivity analyses of various priors is even more demand-
ing. Thus, in a world of sharply constrained time resources, 
demands for informative priors leads instead to avoidance of 
Bayesian analysis.

An alternative, however, is to offer bounds on poste-
rior probabilities when the prior is restricted to a given class. 
These bounds show the range that a sensitivity analysis over 
that class would produce and thus may address concerns of 
those wary of detailed priors. In particular, suppose one would 

regard it reasonable to consider as a possible prior for θt a 
distribution that is symmetric around a single mode (maxi-
mum) at its median θm  and weak for the remaining model 
parameters. This class includes the most common coefficient 
priors, including normal, t, logistic, and certain reference dis-
tributions with median θm, and implies that exp( )θt  has prior 
median exp( )θm . Of special interest, normal (Gaussian) pri-
ors arise when the prior information about θt  is derived from 
a number of sources or studies, none of which contributes a 
dominant fraction of the information; this prior produces a 
lognormal prior for exp( )θt .

Let Pm  denote the two-sided P value for the prior 
median θm . Then, Pm / 2  approximates the smallest possible 
posterior probability that the observed estimate θ�  is on the 
wrong side of θt

27,50; in addition, θ�  is the furthest the poste-
rior median could be from the prior median θm . These inter-
pretations also apply using uniform priors on θt  with median 
θm . Thus, Pm / 2  provides a statistic with a correct Bayesian 
interpretation, without demanding detailed specification of a 
prior or computation beyond Pm / 2. Again, suppose .θ� = 1 40  
and σ� = 0.60, with weak priors for all parameters but θ . Then, 
P0 0 0/ .2 1=  is the smallest possible posterior probability that 
θt  is negative when the θt  prior is unimodal and symmetric 
(eg, normal) around 0; Pln(2) / 2 = 0.12 is the smallest possible 
posterior probability that θt < ( )ln 2  when the θt prior is uni-
modal and symmetric around ln 2( ); and 1.40 is the furthest 
the posterior median could be from any prior median.

Some Limitations
Within the above class of priors, the discrepancy between 

the lower bound Pm / 2  and the posterior probability increases 
as the spread of the prior decreases, albeit the discrepancy is 
not large until the prior becomes fairly informative relative to 
the data and model. To illustrate, suppose we have a normal 
prior with mean 0 and standard deviation τ  for a log rate ratio 
θt tRR= ln( ). This is a symmetric, unimodal prior with median 
0 for θt  and median 1 for RRt t= exp( )θ . The Table shows 
the resulting posterior probabilities of RRt < 1  for various 
estimates ( ˆ)RR� = exp θ , standard errors σ�  for θ� , and prior 
standard deviations τ  for θt  expressed in multiples of σ� . The 
final column uses an infinite τ, which gives back P0 / 2.

The Table shows a general property of normal priors: in 
practical terms, when the prior mean is θm , Pm / 2  will not be far  
below the posterior probability that θ�  is on the wrong side of 
θm  if τ is over twice σ�  (so that the weight 1 2/ τ  for the prior 
mean θ  is less than a quarter the weight 1

2
/ σ�  for the ordi-

nary estimate θ� ). Of course, if one focuses on a particular nor-
mal prior, it can be easily used to calculate directly all desired 
posterior intervals and probabilities40,41,51; Pm / 2 then remains 
a reference point showing what weaker normal priors with the 
same mean could yield.

The bounding interpretation also assumes weak priors 
on the rest of the parameters. Such priors are usually unre-
alistic. Nonetheless, provided care is taken in specifying the 



Greenland and Poole	 Epidemiology  •  Volume 24, Number 1, January 2013

66  |  www.epidem.com	 © 2012 Lippincott Williams & Wilkins

regression model (in particular, by centering the regressors51), 
posterior probabilities for the target parameter tend to be much 
less sensitive to reasonably imprecise priors on the remaining 
parameters than they are to the target ( )θt  prior. Regardless, 
stronger priors on all parameters require much more speci-
fication effort than most are willing to provide; but again, if 
provided, one can use them directly in Bayesian procedures,51 
and P values can serve as reference values for readers wary of 
more informative priors.

All the above approximations assume use of efficient 
methods such as maximum likelihood under standard 
asymptotics52 and that the data distribution satisfies certain 
conditions met by ordinary epidemiologic models.27 For less 
efficient methods (like inverse-probability weighting), the 
interpretations have to be qualified technically by stating they 
are approximate posterior probabilities if one is given only the 
estimating function, rather than the complete likelihood function.

P VALUES INTO BAYES FACTORS
There is a huge literature on Bayesian interpretation of 

P values, most of which demands nonlinear transforms and 
concepts unfamiliar in basic statistics. We describe the most 
common example,29,30,33,34,52–55 although others exist.56

Your Bayes factor for a hypothesis is the ratio of your 
posterior odds on the hypothesis to your prior odds on the 
hypothesis; thus, it is how much your odds change (in multi-
plicative terms) in light of the data.49,57,58 Suppose your prior 

odds on the null versus all other possibilities combined was 1 
and your posterior odds on the null was ¼ (you would bet only 
20% on it after seeing the data); then, your Bayes factor for the 
null would be ¼/ ¼1 = . When the odds are comparing simple 
point hypotheses, such as θt = 0  versus θt = ( )ln 2 , the Bayes 
factor simplifies to the likelihood ratio.

Consider the class of “spike and smear” priors for 
which there is a point probability q that θ θt m=  (ie, a 
spike or point mass of probability at θm of size q), and for 
the remaining possibilities θ θt m≠ , the prior follows a sym-
metric unimodal distribution around θm . This makes q / (1−q) 
the prior odds on θ θt =  versus θ θt ≠ . Sellke et al34 show 
that, when P em < =1 37/ .0 , −eP Pm mln( )  is an approximate 
lower bound on the Bayes factor; in particular, for Pm = 0 0.1 ,  
0.05, and 0.01, lower bounds on the Bayes factor are 0.63, 
0.41, and 0.12, respectively. They further show that for nor-
mal priors on θ θt m≠ , these bounds are even higher: 0.70, 
0.47, and 0.15. Thus, if P0 = 0.05 a Bayesian analysis with 
q = =½ %50  prior probability on the null and mean-zero 
normal otherwise leaves a posterior probability for the null of 
at least 0 0. / ( . ) %47 1 47 32+ = ; this maximum drop from 50% 
to 32% probability for θt = 0  is nowhere near as impressive 
as the usual “borderline significant” description of P0 0 0= . 5.  
We can also find the highest value of q for which P0  would 
deserve its common misinterpretation as the posterior prob-
ability of the null. For P0 0 0= . 5, this value is a prior prob-
ability of q = 10%  for θt = 0.

Transforming P0  into a Bayes factor thus reveals a seri-
ous weakness of conventional interpretations of null P values. 
Bayes factors have several disadvantages, however. They can-
not be read directly off tabulated estimates or P values; they 
require the conceptual steps of thinking in terms of Bayes fac-
tors; and they do not provide any posterior probabilities unless 
we specify q, an arbitrary analysis constant that represents 
commitment of an appreciable fraction of prior probability to 
a single specific value of θ . In contrast, the interpretations 
given earlier use only confidence intervals and P values, with 
no need for Bayes factors or probability spikes.

There are serious objections to the use of probability 
spikes in population research because of their contextual mean-
ing.27,59 For example, a null spike represents an assertion that, 
with prior probability q, we have background data that prove 
θt = 0  with absolute certainty; q = ½  thus represents a 50–
50 bet that there is decisive information literally proving the 
null. Without such information (such as a point prediction by a 
highly plausible physical law), a probability spike at the null is 
an example of “spinning knowledge out of ignorance.”31 This 
prejudice favoring the null characterizes common misinterpre-
tations of frequentist tests37 and yet can lead to Bayesian con-
flicts with those tests.60 In contrast, weak priors have no spike.

DISCUSSION
For more than 70 years, null P values have been the 

most common and yet most controversial inferential statistic, 

TABLE.  Posterior Probabilities of θt < 0, Given a Lognormal 
Ratio Estimate RR� �= exp( )θ  and Lognormal Prior Distribution 
on exp t( )θ  with Median 1, Under Various Scenarios 

RR�

Prior Standard Deviation τ of Log Ratio, θt:

σσ� 2σσ� 4σσ� ∞∞σσ�

When standard error σ� = 0.5  and τ =
0.5 1 2 ∞

1 0.50 0.50 0.50 0.50

1.5 0.28 0.23 0.22 0.21

2 0.163 0.107 0.089 0.083

3 0.060 0.025 0.017 0.014

5 0.0114 0.0020 0.0009 0.0006

8 0.00164 0.00010 0.00003 0.00002

When standard error σ� = 1 and τ =
1 2 4 ∞

1 0.50 0.50 0.50 0.50

1.5 0.39 0.36 0.35 0.34

2 0.31 0.27 0.25 0.24

3 0.22 0.16 0.14 0.14

5 0.127 0.075 0.059 0.054

8 0.071 0.031 0.022 0.019

When prior standard deviation τ is infinite (last column, in italics), these are P0 /2.
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primarily because of their use for hypothesis testing against 
fixed alpha (significance) levels such as 0.05. A point often 
lost in statistical training, however, is that P values can be 
divorced from decision rules, testing, arbitrary cutoffs, and 
null hypotheses. In ordinary epidemiologic analyses, two-
sided P values can instead be used as probability measures 
(with both frequentist and Bayesian meaning) of the distance 
from (or fit of) the entire set assumptions (including model and 
validity assumptions and the explicit assumption of θ θt = )  
to the data. One-sided P values such as P0 / 2  can be used to 
measure support for or probability of their one-sided hypoth-
eses, given the remaining assumptions. Large P values are 
then as telling as small ones; for example, if P0 / 2  is large, 
then, considered in isolation, the study seems vague about the 
direction of an association when viewed through the same 
model lens used to compute the estimate θ�  and the confi-
dence interval. Furthermore, if one uses an informative prior 
to derive the posterior probability of the point estimate being 
in the wrong direction, P0 / 2  provides a reference point indi-
cating how much the prior information influenced that poste-
rior probability.

Confidence intervals provide valuable information about 
the precision implied by the data12,17 given the assumed model; 
hence, we would certainly not wish to see them replaced by P 
values. However, confidence intervals are rarely precise about 
the relation of observations to prespecified parameter values, 
which in part explains why null P values can be viewed as 
defensible supplements to confidence intervals when the null 
has legitimate claim to our attention (as in exploratory and 
many highly controversial settings).4,10 Furthermore, the fre-
quency behavior and posterior interpretation of P0  are more 
robust to model misspecification than are confidence intervals 
and non-null P values, which is worth noting given that we 
are always uncertain about the model form.5 They are also 
more robust to validity problems that produce bias toward the 
null, especially certain simple types of measurement error or 
misclassification of the exposure or disease,61 where, under a 
weak prior, P0 / 2  remains the posterior probability that the 
estimate is in the wrong direction,62 whereas confidence inter-
vals become invalid.

Even when the null is an arbitrary hypothesis unworthy 
of special attention, null-related questions are encouraged by 
automatic software emission of P0. Again, incorrect Bayesian 
interpretations of P0  remain the norm, encouraged by some 
instructional sources.1,2,63 It thus seems important to displace 
these misinterpretations with correct ones. With correct 
interpretation of P0  in mind, extensions of P values to θ  of 
greater contextual interest is simple, and extensions to more 
realistic priors can also be obtained by translating the priors to 
data and adding them to the conventional analysis.41,51

After one separates P values from arbitrary testing 
cutoffs such as 0.05 and goes beyond the null, one may see 
confidence intervals as problematic for encouraging degraded 
binary inferences.28 Asking whether a value θ  is in or out 

of the confidence interval turns the confidence interval into a 
0.05-level test of that value. If we try to be more precise, we 
hit failings of intuition. For example, if the 95% confidence 
limits for RR are 1.8 and 3.3, what is the one-sided P value for 
RR ≤ 2? Few would recognize quickly that it is Pln(2) / 2 = 0.10, 
giving a 10% posterior probability that RR < 2  under a weak 
prior for all model parameters, and at least 10% if the prior for 
RR was more sharply specified as lognormal with median at 2.

Failure to appreciate the complementarity of confi-
dence intervals and P values may stem more from historical 
accidents in how the two statistics entered common usage.22 
The chief disaster is that for generations Bayesian perspec-
tives were banished from introductory statistics. Much like 
what happened with other attempts at knowledge suppres-
sion, users have filled the gap with interpretations that miss 
crucial subtleties and are often simply false. A common false 
interpretation is that P0  is the probability that chance alone 
produced the observed association. Unfortunately, the prem-
ise that chance alone operated is logically the same as the null 
hypothesis (“chance alone” implies there is no effect and no 
bias), and thus, this misinterpretation is the same as claiming 
P0  is the probability of the null.11,37 Correct Bayesian inter-
pretations can address this problem.

Given the extensive misinterpretations of frequentist 
statistics and the enormous (some would say impossible)64 
demands made by fully Bayesian analyses, a serious argument 
can be made for de-emphasizing (if not eliminating) inferential 
statistics in favor of more data presentation such as tables of 
raw numbers.65 After all, the only purpose of a single study is 
to contribute its description and data to a broad pool of relevant 
information.66 Without an inferential ban, however, an improve-
ment of practice will require re-education, not restriction.
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