NON-ALCOHOLIC FATTY LIVER DISEASE

(NAFLD)

By Dr. M. Ghezlou

(Gastroentrologist and Hepatologist)

DEFINITION

Nonalcoholic fatty liver disease(NAFLD) :

✓ Fat accumulation in the liver exceeding 5% of its weight.

✓ Evidence of *hepatic steatosis*, either by *imaging* or by *histology*

√ No causes for secondary hepatic fat accumulation

CAUSES OF SECONDARY H.STEATOSIS

Macrovesicular steatosis

- alcohol consumption
- Hepatitis C
- Wilson Disease
- Lipodystrophy
- Starvation
- Parenteral nutrition
 Medications (e.g., amiodarone, methotrexate, tamoxifen, corticosteroids)

Microvascular steatosis

- Reye's syndrome
- Medications (valproate, antiretroviral medicines)
- Acute fatty liver of pregnancy
- HELLP syndrome
- Inborn errors of metabolism

PATHOGENESIS

Insulin resistance is related to obesity and is central to the pathogenesis of NAFLD.

In addition, oxidative stress and cytokines are important contributing factors,

Together resulting in:
steatosis and progressive liver damage in
genetically susceptible individuals.

NAFLD AND RELATED DEFINITIONS

■ Nonalcoholic Fatty Liver Disease (NAFLD):

includes the entire spectrum of fatty liver disease in individuals
 without significant alcohol consumption, ranging from fatty
 liver to steatohepatitis and cirrhosis.

Normal liver Steatosis NASH Fibrosis

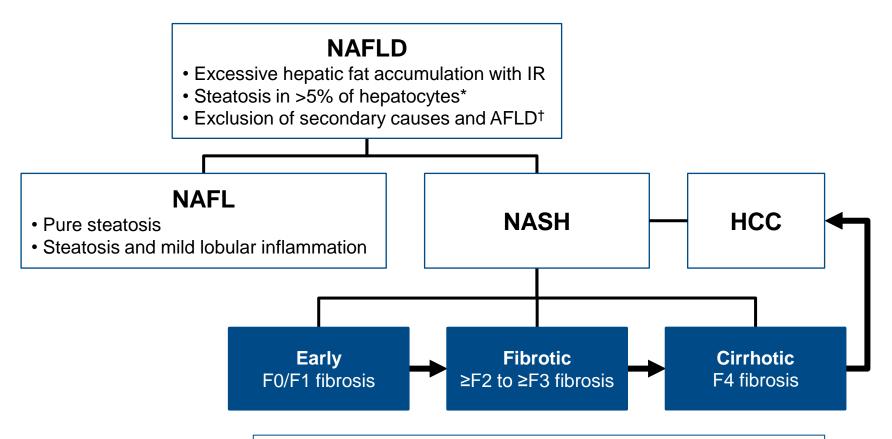
NAFLD AND RELATED DEFINITIONS

□ Nonalcoholic Fatty Liver (NAFL):

• hepatic steatosis without evidence of hepatocellular injury in the form of ballooning of the hepatocytes or no evidence of fibrosis. The risk of progression to cirrhosis and liver failure is minimal.

NAFLD AND RELATED DEFINITIONS

□Nonalcoholic steatohepatitis (NASH):


- hepatic steatosis and inflammation with hepatocyte injury
- (ballooning) with or without fibrosis.
- This can progress to cirrhosis, liver failure and rarely liver cancer.

□ NASH Cirrhosis:

• Presence of cirrhosis with current or previous histological evidence of steatosis or steatohepatitis.

Definitions of NAFLD, NAFL and NASH

Definitive diagnosis of NASH requires a liver biopsy

^{*}According to histological analysis or proton density fat fraction or >5.6% by proton MRS or quantitative fat/water-selective MRI; †Daily alcohol consumption of ≥30 g for men and ≥20 g for women

PATIENT SYMPTOMS

In most cases, NASH does not cause any specific symptoms.

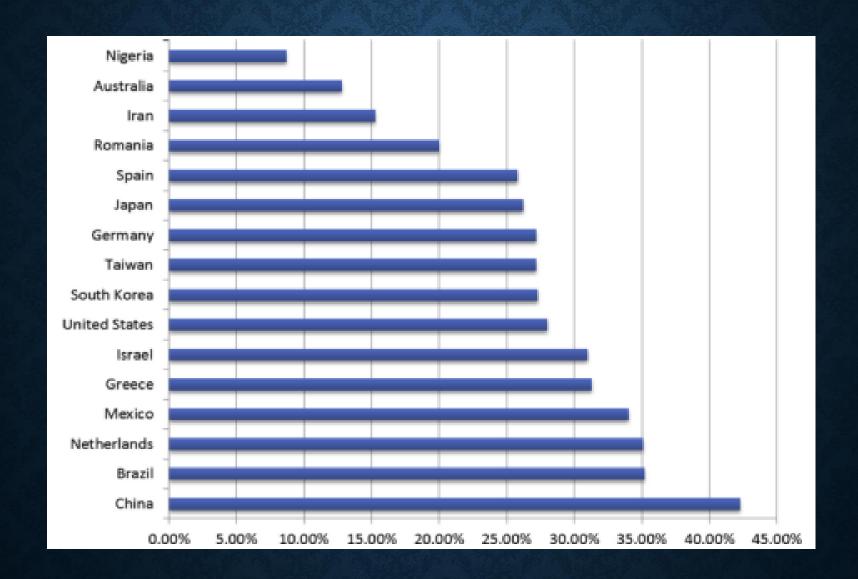
There are sometimes vague symptoms of

fatigue, malaise, and abdominal discomfort.

PREVALENCE

 The meta-analysis estimated that the overall global prevalence of NAFLD diagnosed by imaging is around 25%

 The highest prevalence of NAFLD is reported from the Middle East 32% and South America 30%


the *lowest prevalence* rate is reported from Africa
 13%

EPIDEMIOLOGY

• NAFLD is the *most common chronic liver disease* in Western countries.

- 20% to 30% of adults.
- 10-15% of NAFL develop NASH
- Up to 20% of NASH will progress to cirrhosis

- 75% of obese have NAFLD
- 20% may have NASH

Global prevalence of NAFLD

EPIDEMIOLOGY

 both the prevalence of NAFLD and stage of liver disease appear to increase with age.

 male sex has been considered a risk factor for NAFLD.

• the prevalence of NAFLD *in men is 2 times* higher than in women.

RISK FACTORS ASSOCIATED WITH NAFLD

Common Conditions With Established Association

- Obesity
- **T2DM**
- Dyslipidemia
- Metabolic syndrome
- Polycystic ovary syndrome

Other Conditions Associated With NAFLD

- Hypothyroidism
- Obstructive sleep apnea
- Hypopituitarism
- Hypogonadism
- Pancreatoduodenal resection
- Psoriasis

Table 6 Risk factors and associated conditions

Risk factors	Disease progression	Associated conditions
 Insulin resistance/metabolic syndrome Jejunoileal bypass surgery Age—highest risk in 40–65-year-olds, but it does occur in children < 10 y old Ethnicity—higher risk in Hispanics and Asians, lower risk in African-Americans Positive family history—genetic predisposition Drugs and toxins—e.g., amiodarone, coralgil, tamoxifen, perhexiline maleate, corticosteroids, synthetic estrogens, methotrexate, IV tetracycline, highly active antiretroviral drugs (HAART) 	Obesity, Increased BMI and waist circumference Uncontrolled diabetes, hyperglycemia, hypertriglyceridemia Sedentary lifestyle, lack of exercise Insulin resistance Metabolic syndrome Age Genetic factors	 Hyperlipidemia Insulin resistance/metabolic syndrome Type 2 diabetes Hepatitis C Rapid weight loss Total parenteral nutrition Wilson's disease, Weber–Christian disease, a beta lipoproteinemia, diverticulosis, polycystic ovary syndrome, obstructive sleep apnea

METABOLIC SYNDROME

The presence of three or more of the following features:

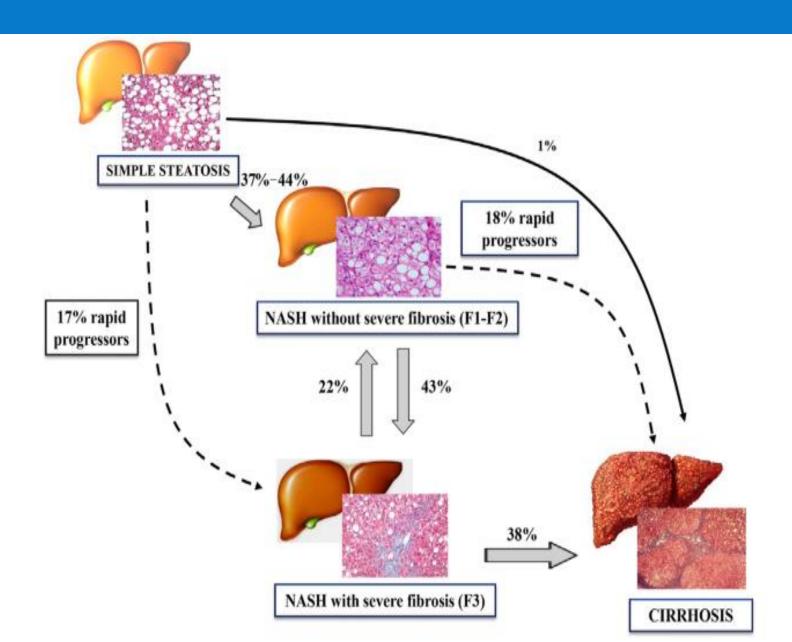
- Wist circumference greater than 102 cm in men or greater than 88 cm in women; (EASL:94-80cm)
- II. TC level 150 mg/dL or greater;
- III. HDL cholesterol level less than 40 mg/dL in men and less than 50 mg/dL in women;
- IV. Systolic Blood pressure: 130 mm Hg or greater or Diastolic Blood pressure: 85 mm Hg or greater;
- I. FBS level 110 mg/dL or greater (EASL:100mg/dL)

NATURAL HISTORY OF NAFLD

Patients with NAFLD have increased overall mortality compared to matched control populations without NAFLD.

The most common cause of death in patients with NAFLD is cardiovascular disease (CVD), independent of other metabolic comorbidities.

NATURAL HISTORY OF NAFLD


liver-related mortality:

is the 12th leading cause of death in the general population,

it is the second or third cause of death among patients with NAFLD.

NAFLD is now considered the third-most common cause of hepatocellular carcinoma (HCC) in the United States.

Progression and Natural History

- Causes of mortality in cirrhotic NASH patients:
- Liver failure
 Sepsis
- Variceal hemorrhage HCC
- Cardiovascular disease
- Independent predictors for progression of fibrosis:
- — Age > 45-50 BMI > 28-30 kg/m2
- Degree of insulin resistance Diabetes
- — Hypertension
- Negative impact on NASH survival:
- Diabetes and elevated ALT and AST
- Older age and presence of necrotic inflammation on initial liver biopsy

EVALUATION OF INCIDENTALLY DISCOVERED

HEPATIC STEATOSIS(HS)

Patients with *incidental HS* detected on imaging who lack any liver-related symptoms or signs and have *normal liver biochemistries* should be assessed for:

metabolic risk factors and alternate causes for HS such as significant alcohol consumption or medications.

SCREENING FOR NAFLD IN PRIMARY CARE, DIABETES, AND OBESITY CLINICS

There should be a *high index of suspicion* for NAFLD and NASH in patients with *type 2 diabetes*.

SCREENING OF FAMILY MEMBERS

Systematic screening of family members for NAFLD is *not recommended* currently

DIAGNOSIS

The presence of any of the following, especially with a history of abnormal AST/ALT, should lead to a work-up for NAFLD/NASH:

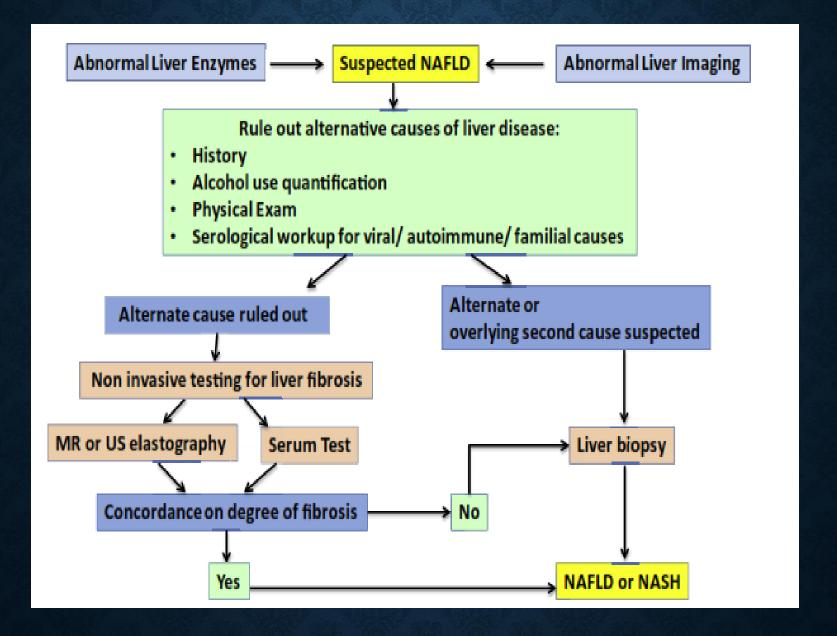
Chronic elevation of AST/ALT PLUS

- Presence of obesity, especially morbid obesity (BMI > 35)
 - Diagnosis of type 2 diabetes mellitus
 - Diagnosis of metabolic syndrome
 - History of obstructive sleep apnea
 - Presence of insulin resistance

MUST BE EXCLUDED

Viral hepatitis:

hepatitis B surface antigen, hepatitis C virus antibody or HCVRNA, hepatitis A antibody IgM, hepatitis E antibody; it should be noted that the patient may have coexisting viral hepatitis as well as NAFLD/NASH.


Alcohol-related liver disease including alcoholic steatohepatitis.

Autoimmune liver disease.

Congenital causes of chronic liver disease:

hereditary hemochromatosis Wilson's disease, alpha-1-antitrypsin deficiency PCOD

Drug-induced liver disease.

Investigating a patient with NAFLD.

LIVER BIOPSY

Although it is invasive and has a potential for sampling errors and inconsistent interpretation of the histopathology

liver biopsy is required in order to establish the diagnosis and to stage NASH.

There is no reliable way of distinguishing between NAFLD/ALD and NASH/ASH without a liver biopsy.

WHEN TO OBTAIN A LIVER BIOPSY IN PATIENTS WITH NAFL

Liver biopsy should be considered in patients with NAFLD who are at increased risk of having SH and/or advanced fibrosis.

The presence of :MetS, NFS or FIB-4, or liver stiffness measured by VCTE or MRE may be used for identifying patients who are at risk for SH and/or advanced fibrosis.

Liver biopsy should be considered in patients with suspected NAFLD in whom competing etiologies for HS and the presence and/or severity of coexisting CLDs cannot be excluded without a liver biopsy.

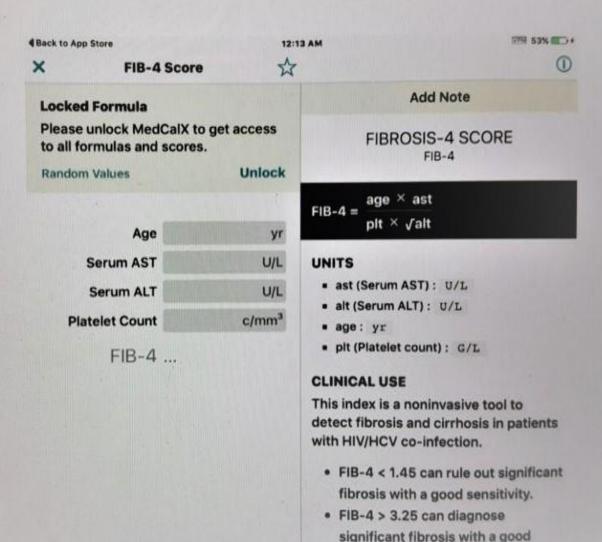
LIMITATIONS OF LIVER BIOPSY

- Poor patient compliance
- Limited usefulness for dynamic follow-up
- Risk of *complications* typical of invasive procedures (Pain, bleeding, mortality)
- Sampling errors

NON INVASIVE ASSESSMENT

OF STEATOHEPATITIS AND ADVANCED FIBROSIS

In patients with NAFLD, **MetS** predicts the presence of **SH**, and its presence can be used to target patients for a liver biopsy.


NFS or FIB-4 index are clinically useful tools for identifying NAFLD patients with higher likelihood of having bridging fibrosis or cirrhosis

Transient Elastography or MRE are clinically useful tools for identifying advanced fibrosis in patients with NAFLD.

DISEASE STAGE CAN BE ASSESSED USING:

- Vibration-Controlled Transient Elastography (VCTE)
- Fibrosis-4 index (FIB4)
- NAFLD Fibrosis Score (NFS)
- Aspartate aminotransferase (AST) to platelet ratio index (APRI)

Fibrosis-4 (FIB4) index

specificity.

· Another diagnostic test should be

NAFLD Fibrosis Score (NFS)

◆ Back to App Store

12:13 AM

NAFLD Fibrosis Score

1

Locked Formula

Please unlock MedCalX to get access to all formulas and scores.

Random Values

Unlock

NO

Score = -1.675 + 0.037 × age + 0.094 × bmi + (1.13 if diabetes) + 0.99 × (ast / alt) - 0.013 × plt - 0.66 × alb

Add Note

NONALCOHOLIC FATTY LIVER

DISEASE (NAFLD) FIBROSIS

SCORE

Age yr Body Mass Index kg/m² Serum AST U/L Serum ALT U/L Serum Albumin g/dL Platelet Count c/mm³

Score ...

Diabetes Mellitus or IFG

UNITS

age: yr

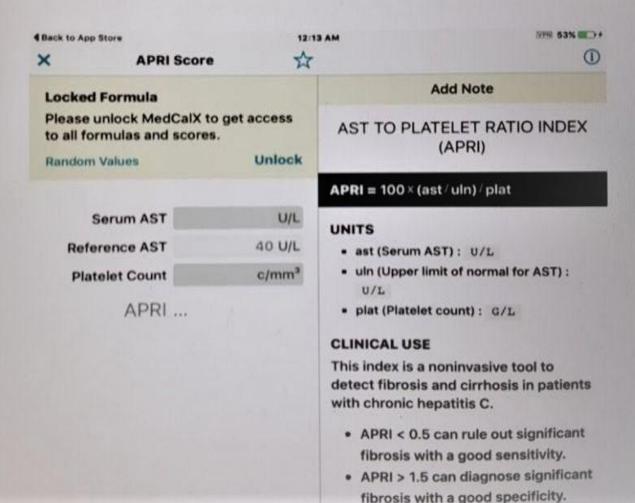
bmi (Body mass index): kg/m²

ast (Aspartate transaminase): U/L

alt (Alanine transaminase): U/L

plt (Platelets): G/L

alb (Serum albumin): g/dL

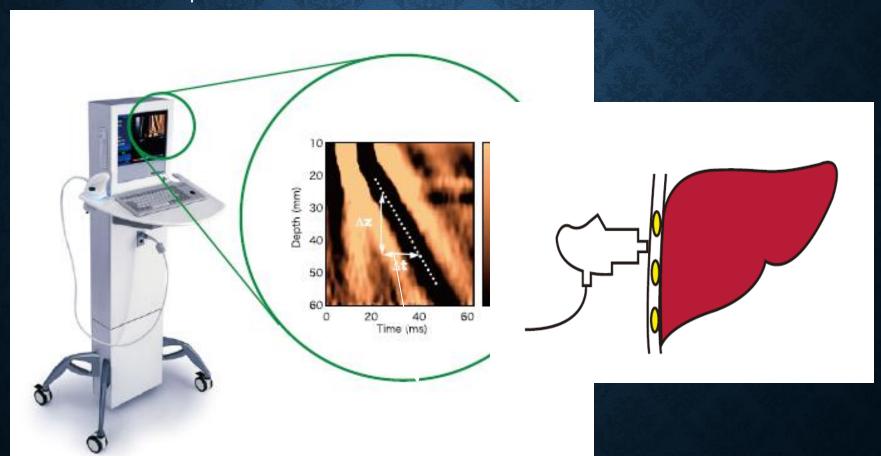

CLINICAL USE

A noninvasive system that identifies liver fibrosis in patients with NAFLD.

REFERENCES

 Angulo P et al. Hepatology. 2007 Apr;45(4):846-54. PubMed

Aspartate aminotransferase (AST) to platelet ratio index (APRI)

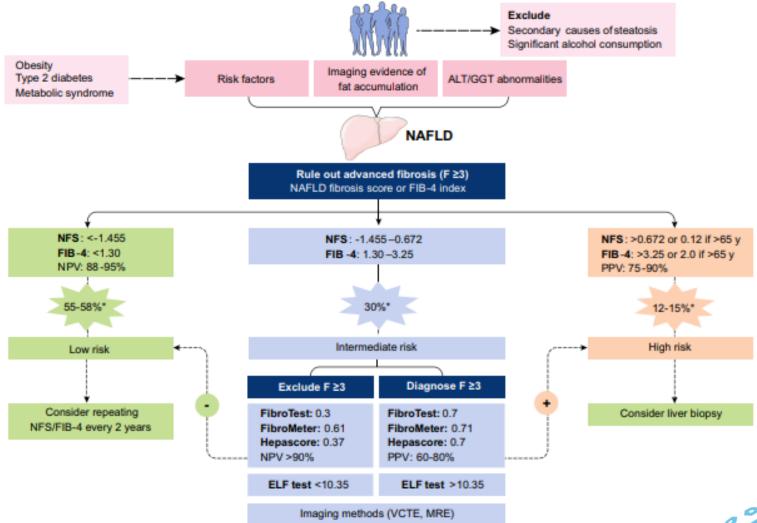

VIBRATION-CONTROLLED TRANSIENT ELASTOGRAPHY

(VCTE)

- Disease stage can be assessed using vibration controlled transient elastography (VCTE), which is
- > relatively *inexpensive* compared to magnetic resonance elastograstography (MRE)
- widely available at many academic medical centers

FIBROSCAN

- •3.5 MHz ultrasound transmitted from the vibrator toward the tissues
- •pulse-echo ultrasound acquisitions are performed which is directly related to tissue stiffness.
- •The harder the tissue, the faster the shear wave propagates
- •The operator, assisted by ultrasound time-motion images
- •liver portion at least 6 cm thick and free of large vascular structures
- •The measurement depth is between 25 and 65 mm below the skin surface



ADVANTAGES

- Safe
- Fast screening
- Acceptability by patients
- Longitudinal follow-up
- Efficacy of therapeutic treatments
- Prognostic evaluation
- Accurate

Potential algorithm for non-invasive assessment: prediction rules and blood-based biomarkers

^{*}Estimated prevalence for low-, intermediate- and high-risk groups
Vilar-Gomez E, Chalasani N. J Hepatol 2018;68:305–15
Copyright © 2017 European Association for the Study of the Liver <u>Terms and Conditions</u>

MANAGEMENT OF PATIENTS WITH NAFLD

WHOM TO TREAT?

Pharmacological treatments aimed primarily at improving liver disease should generally be limited to those with biopsy-proven NASH and fibrosis.

TREATMENT

LIFESTYLE MODIFICATIONS INCLUDING:
DIET
EXERCISE
WEIGHT LOSS

REMAIN THE MOST EFFECTIVE THERAPY FOR (NAFLD).

WEIGHT LOSS OF 3% TO 5% IS ASSOCIATED WITH DECREASED STEATOSIS

7% TO 10% DECREASE IS NECESSARY TO ACHIEVE NAFLD/NONALCOHOLIC STEATOHEPATITIS REMISSION AND FIBROSIS REGRESSION.

COMPONENTS OF A LIFESTYLE APPROACH TO NAFLD

Energy restriction

- Calorie restriction (500–1,000/day)
- 7–10% weight loss target
- Long-term maintenance approach

Fructose intake

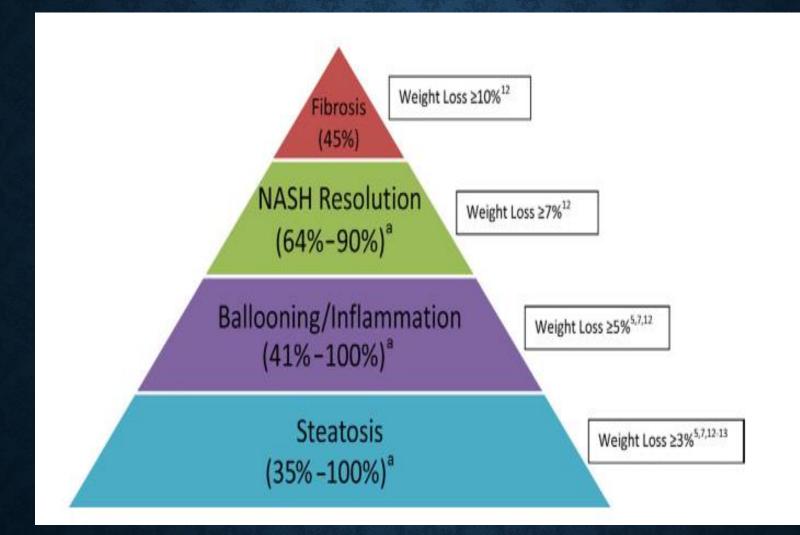
 Avoid fructose-containing food and drink

Coffee consumption

No liver-related limitations

Comprehensive lifestyle approach

Daily alcohol intake

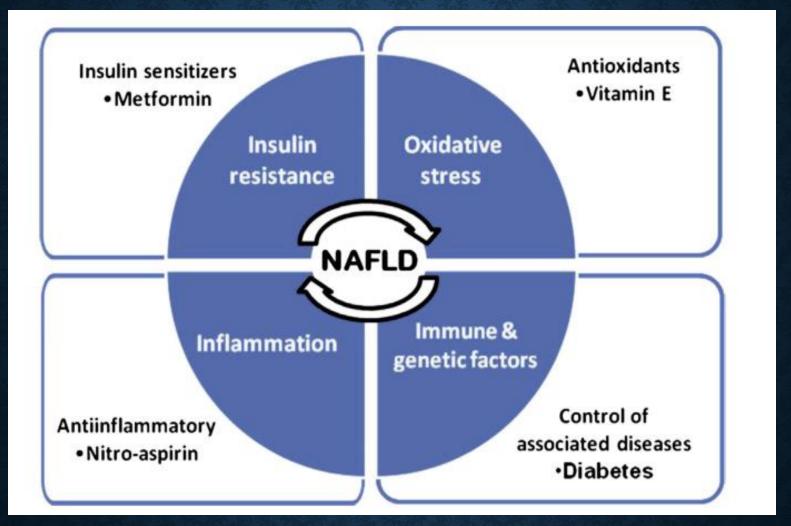

 Strictly below 30 g men and 20 g women

Macronutrient composition

- Low-to-moderate fat
- Moderate-to-high carbohydrate
- Low-carbohydrate ketogenic diets or high protein

Physical activity

- 150–200 min/week moderate intensity in 3–5 sessions
- Resistance training to promote musculoskeletal fitness and improve metabolic factors


Weight loss pyramid

TREATMENT

CURRENT PHARMACOLOGIC THERAPY

 Modest but sustained weight loss, regular exercise, and diet composition modification seem to improve biochemical and histologic abnormalities.

 Other therapies directed at insulin resistance, oxidative stress, cytoprotection, and fibrosis may also offer benefits, but further studies are required.

Pathogenesis and potential therapy for NAFLD. Development of NAFLD is caused by interaction between multiple factors, mainly insulin resistance, oxidative stress, inflammation, and genetic predisposition. The potential therapies of NAFLD target one or more of these factors.

INSULIN SENSITIZERS

METFORMIN

several studies have shown an *improvement* in *serum* aminotransferases and IR,

metformin does not significantly improve liver histology.

Metformin is *not recommended* for treating NASH in *adult patients*.

INSULIN SENSITIZERS

THIAZOLIDINEDIONES

Pioglitazone improves *liver histology* in patients with and without T2DM with biopsy-proven NASH.

Until further data support its safety and efficacy, pioglitazone should not be used to treat NAFLD without biopsy-proven NASH.

VITAMIN E

Vitamin E administered at a daily dose of 800 IU/day improves liver histology in nondiabetic adults with biopsy-proven NASH and therefore may be considered for this patient population.

Until further data supporting its effectiveness become available, vitamin E is

Not recommended to treat NASH in:

- Diabetic patients,
- NAFLD without liver biopsy,
- NASH cirrhosis,
- or cryptogenic cirrhosis

BARIATRIC SURGERY

Foregut bariatric surgery can be considered in otherwise *eligible obese* individuals with *NAFLD* or *NASH*.

The type, safety, and efficacy of foregut bariatric surgery in otherwise eligible obese individuals with established cirrhosis attributed to NAFLD are not established.

URSODEOXYCHOLIC ACID, OMEGA-3 FATTY ACIDS, AND MISCELLANEOUS AGENTS

UCDA is not recommended for the treatment of NAFLD or NASH.

Omega-3 fatty acids should not be used as a specific treatment of NAFLD or NASH, but they maybe considered to treat hypertriglyceridemia in patients with NAFLD.

FARNESOID X RECEPTOR AGONISTS

 Farnesoid X (FXR) is the nuclear receptor for bile acids that play a critical role in:

- carbohydrate and lipid metabolism
- and regulation of insulin sensitivity

Summary: pharmacologic therapies in the treatment of Non Alcoholic Steatohepatitis (NASH)

Treatment	Mechanism	Biochemical Effects	Histologic Effects	Comments
Orlistat	Weight loss	↓ LFTs and insulin resistance	↓ Steatosis, inflammation, NAS score	Improvement in inflammation and NAS seen if weight loss ≥9%
Rimonabant	Weight loss, possible peripheral effects	↓ Insulin resistance, triglyceride levels, LFTs ↑ HDL and adiponectin levels	↓ Steatosis	Animal data, psychiatric side effects
Incretin analogues (exendin-4)	Weight loss	↓LFTs, insulin resistance, hemoglobin A₁C levels	↓ Steatosis	Animal and pilot studies in NAFLD; extensively studied in type 2 diabetes mellitus
TZDs	PPAR-γ agonists	LFTs, insulin resistance, and TNF-α levels Adiponectin levels	↓ Steatosis, inflammation and fibrosis	Side effects: weight gain, peripheral edema, cardiac, fractures, need for maintenance therapy
Metformin	↑ AMP kinase	↓ LFTs and insulin resistance No effect on adiponectin levels	+/— improvement in steatosis, inflammation, and fibrosis	Data conflicting; no RCTs
Vitamin E	↓ Oxidative stress	↓ LFTs	Uncertain	Large trials with histologic follow- up evaluation required
Betaine	↓ Oxidative stress	↓ LFTs	\downarrow Steatosis, inflammation, fibrosis	Pilot study only
UDCA	Hepatoprotective	No change	No change	Not beneficial in large RCT
Pentoxifylline	Hepatoprotective	↓ LFTs, TNF-α levels	↓ Steatosis, inflammation	Pilot study only
HMG CoA-reductase inhibitors	Improve lipid panel	? LFTs	Uncertain	Conflicting studies
Ezetimibe	Blocks cholesterol absorption in intestine	? LFTs	↓ Steatosis and fibrosis	Animal data
Angiotensin receptor blockers	? Inhibits stellate cells	↓ LFTs	↓ Fibrosis	Animal and pilot studies

FOLLOW UP

Table 14	Follow-up	tests and	their timing
----------	-----------	-----------	--------------

Follow-up	Recommended
Evaluate weight loss, exercise, diet and lifestyle changes	After 6 months
Blood and platelet count	2 × annually
Liver biochemical tests	2 × annually
Prothrombin time	2 × annually
Consult hepatologist	At 6 months and then yearly, depending on the response
Screening for cardiovascular risk	Every 1–2 years, depending on risk factors
Liver biopsy	Every 3-5 years, depending on response
Imaging tests	When indicated