Terminator Salvation? New Artificial Intelligence Program to Accelerate Clean Energy Generation
From ‘The Terminator’ and ‘Blade Runner’ to ‘The Matrix’, Hollywood has taught us to be wary of artificial intelligence. But rather than sealing our doom on the big screen, algorithms could be the solution to at least one issue presented by the climate crisis.
Researchers at the ARC Centre of Excellence in Exciton Science have successfully created a new type of machine learning model to predict the power-conversion efficiency (PCE) of materials that can be used in next-generation organic solar cells, including ‘virtual’ compounds that don’t exist yet.
Unlike some time-consuming and complicated models, the latest approach is quick, easy to use and the code is freely available for all scientists and engineers.
The key to developing a more efficient and user-friendly model was to replace complicated and computationally expensive parameters, which require quantum mechanical calculations, with simpler and chemically interpretable signature descriptors of the molecules being analyzed. They provide important data about the most significant chemical fragments in materials that affect PCE, generating information that can be used to design improved materials.
Your Comment :